当前位置:主页 > 科技论文 > 电子信息论文 >

光子晶体长周期光纤光栅传感特性实验研究

发布时间:2018-04-26 04:05

  本文选题:光纤传感 + CO_2激光 ; 参考:《武汉工程大学》2015年硕士论文


【摘要】:长周期光纤光栅(Long Period Fiber Grating,LPFG)由于其无后向散射、对周围环境敏感等特点广泛应用于传感领域和通信及其它技术领域。光子晶体光纤(Photonic Crystal Fiber,PCF)的多孔结构使其具有很多优于传统光纤的特性,改变包层中空气孔的排列方式、大小、孔间距等参数可改变其传输性质,这大大拓展了光子晶体光纤的应用范围。光子晶体光纤长周期光栅(PCF-LPFG)整合了光子晶体光纤和长周期光纤光栅的优点,它是通过在PCF上实现周期性折射率调制而形成的,它们的结合使得空气孔可以为气体、液体和微粒子等提供通道。与在普通单模光纤(Single Mode Fiber,SMF)上制备的普通LPFG相比,它有着设计自由度和灵活性高、制作工艺多样化、可进行多参量、多功能测量等特点。LPFG和PCF-LPFG两者的特性差别很大,如PCF-LPFG对温度不敏感,这可以很好的解决温度和其它被测物理量之间交叉敏感的问题。制备LPFG的方法很多种如紫外写入法、飞秒激光逐点写入、机械法等,但相比之下CO_2激光曝光法具有成本低、灵活性强、可靠性高、适用光纤类型广等优点。本文基于国内外学者研究基础上,采用了一种改进型的CO_2激光二维扫描制备LPFG的方法,并利用该方法在SMF和PCF上成功制备了LPFG。鉴于此,本论文的主要研究工作有:(1)介绍了制作LPFG的五种方法各自的优缺点,并从残余应力释放、玻璃致密化、物理变形三个方面分析了CO_2激光制备LPFG引起折射率变化的机理,且对长周期光纤光栅的光谱特性采用耦合模理论进行了分析和计算。(2)搭建了一套高频CO_2激光脉冲二维扫描制备LPFG的实验系统,主要包括搭建CO_2激光光路系统,并对系统进行了优化改进,提高了光栅制备的稳定性、重复性和成功率。并且利用该系统分别在普通单模光纤和光子晶体光纤上成功写制了消光比达30dB插入损耗小于0.3dB的LPFG和消光比达25dB和插入损耗小于0.7dB的PCF-LPFG,并对制备过程中的传输谱的演变和其温度、应变、折射率、弯曲等外界因素的传感特性进行了比较和分析。实验表明:PCF-LPFG相对于普通LPFG其对温度不敏感灵敏度仅为4pm/°C;当外界折射率小于1.46时,随着折射率的增大两者的漂移方向相反;PCF-LPFG轴向应变灵敏度比普通LPFG的应变灵敏度提高了一个数量级,达到了-3.5pm/με;PCF-LPFG的谐振波长和损耗峰幅值对气压的灵敏度都较低,分别为0.12 nm/MPa、0.25 dB/MPa。(3)除了上述工作以外,还做了光纤F-P(Farby-Perot)干涉仪相关方面的工作。FPI传感器因其结构简单、高可靠性、高灵敏度等特点成为光纤传感应用的热点之一,受到广泛关注。本文提出的两种F-P结构均是采用单模光纤和石英毛细管制作而成的,两者分别具有高压强灵敏度和高温度灵敏度。其中高压强灵敏度的F-P腔在常压下其灵敏度可大于1000nm/kPa,比基于膜片的光纤F-P传感器压强灵敏度至少高一个量级。高温度灵敏度的F-P腔的最高温度灵敏度可达23.4 nm/°C。
[Abstract]:Long period fiber Bragg grating (Long Period Fiber Grating, LPFG) is widely used in sensing field, communication and other technical fields because of its lack of backscatter and sensitivity to the surrounding environment. The porous structure of the photonic crystal fiber (Photonic Crystal Fiber, PCF) makes it have a lot of characteristics superior to the traditional fiber and changes the hollow hole of the cladding. The arrangement, size, hole spacing and other parameters can change the transmission properties of the photonic crystal fiber, which greatly expands the application range of the photonic crystal fiber. The photonic crystal fiber long period grating (PCF-LPFG) integrates the advantages of the photonic crystal fiber and the long period fiber grating. It is formed by the realization of the periodic refractive index modulation on the PCF. It allows air holes to provide channels for gases, liquids and particles. Compared with ordinary LPFG made on the common single mode fiber (Single Mode Fiber, SMF), it has a high degree of freedom and flexibility in design, a variety of manufacturing processes, and the characteristics of both.LPFG and PCF-LPFG, such as PCF, such as PCF, and.LPFG. -LPFG is not sensitive to temperature, which can be a good solution to the cross sensitivity between temperature and other measured physical quantities. There are many methods to prepare LPFG such as UV writing, femtosecond laser writing, mechanical method and so on. In contrast, the CO_2 laser exposure method has the advantages of low cost, strong flexibility, high reliability, and wide application of optical fiber type. Based on the domestic and foreign scholars' research, a modified CO_2 laser two-dimensional scanning method for the preparation of LPFG is adopted, and this method has been successfully prepared on SMF and PCF by this method. The main research work of this paper is as follows: (1) the advantages and disadvantages of the five methods of making LPFG are introduced, and the release of residual stress and glass caused by the residual stress are introduced. The mechanism of the change of the refractive index caused by the CO_2 laser preparation of LPFG is analyzed in three aspects. The spectral characteristics of the long period fiber grating are analyzed and calculated by the coupled mode theory. (2) a test system for the high frequency CO_2 laser pulse scanning for the preparation of LPFG is built, which mainly includes the construction of the CO_2 laser optical path system. The system has been optimized and improved to improve the stability, repeatability and success rate of the grating preparation. And the system is successfully written on the common single mode fiber and photonic crystal fiber, and the LPFG with the insertion loss less than 0.3dB of the insertion loss of 30dB and the PCF-LPFG of the extinction ratio of 25dB and the insertion loss less than 0.7dB are successfully written on the system, and the preparation process is also made. The evolution of the transmission spectrum and the sensing characteristics of the external factors such as temperature, strain, refractive index, bending and other external factors are compared and analyzed. The experiment shows that the sensitivity of PCF-LPFG to the ordinary LPFG is only 4pm/ C; when the external refractive index is less than 1.46, the drift direction of the two is opposite with the increase of the refractive index; the axial direction of the PCF-LPFG axis is in the axial direction. The strain sensitivity is higher than the strain sensitivity of the ordinary LPFG, and the strain sensitivity is increased by an order of magnitude and -3.5pm/ um. The sensitivity of the resonant wavelength and the amplitude of the loss peak to the pressure is lower, which is 0.12 nm/MPa and 0.25 dB/MPa. (3) respectively. Besides the above work, the working.FPI sensor related to the optical fiber F-P (Farby-Perot) interferometer is also made. Because of its simple structure, high reliability and high sensitivity, it has become one of the hot topics in optical fiber sensing applications. The two F-P structures proposed in this paper are made of single mode fiber and quartz capillary, both of which have high sensitivity and high sensitivity respectively. The high voltage and strong sensitivity of the F-P cavity is constant. The sensitivity is more than 1000nm/kPa, which is at least one order of magnitude higher than the sensitivity of the optical fiber F-P sensor based on the diaphragm. The maximum temperature sensitivity of the F-P cavity with high temperature sensitivity can reach 23.4 nm/ degrees C.

【学位授予单位】:武汉工程大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TN253

【相似文献】

相关期刊论文 前10条

1 周少玲;长周期光纤光栅的制作技术[J];光纤与电缆及其应用技术;2001年05期

2 李栩辉,夏历,冯佳,陈向飞,谢世钟;一种新的长周期光纤光栅制作技术[J];光学学报;2003年03期

3 宋宁,郭晓金,殷宗敏;长周期光纤光栅的分析和优化设计[J];光子学报;2003年06期

4 魏仁选,何伟,王昌,姜德生;长周期光纤光栅制备技术研究[J];武汉理工大学学报;2003年06期

5 李志全,王莉,吴飞,黄丽娟;长周期光纤光栅及其组合透射谱的仿真研究[J];光电子技术与信息;2004年03期

6 饶云江;;长周期光纤光栅研究现状分析[J];电子科技大学学报;2005年S1期

7 王成;张国生;;长周期光纤光栅的制作方法进展[J];传感器与微系统;2007年01期

8 李晓兰;张伟刚;张珊珊;范弘建;殷丽梅;;引入调制结构形成的相移长周期光纤光栅研究[J];光学学报;2011年06期

9 陈鹏程;;长周期光纤光栅的功率特性[J];光谱实验室;2011年05期

10 邹红波;梁大开;曾捷;李X;周怡妃;;基于级联长周期光纤光栅的光纤布拉格光栅解调系统[J];南京航空航天大学学报;2011年06期

相关会议论文 前10条

1 刘海涛;杨亦飞;汤树成;陈建平;;长周期光纤光栅的理论及实验[A];2003'全国微波毫米波会议论文集[C];2003年

2 董小伟;裴丽;李彬;简伟;简水生;;影响长周期光纤光栅的特性参数及其在通信方面的应用[A];全国第十一次光纤通信暨第十二届集成光学学术会议(OFCIO’2003)论文集[C];2003年

3 牛永昌;饶云江;胡爱姿;陈爱军;高庆;马任飞;;长周期光纤光栅带宽分析[A];中国仪器仪表学会第六届青年学术会议论文集[C];2004年

4 饶云江;;新型长周期光纤光栅及其在光纤通信中的应用[A];大珩先生九十华诞文集暨中国光学学会2004年学术大会论文集[C];2004年

5 牛永昌;饶云江;冉曾令;胡爱姿;;新型保偏长周期光纤光栅的制作与理论研究[A];大珩先生九十华诞文集暨中国光学学会2004年学术大会论文集[C];2004年

6 严明;罗售余;詹黎;张智明;夏宇兴;;施加轴向应力的啁啾长周期光纤光栅的传感测量[A];光子科技创新与产业化——长三角光子科技创新论坛暨2006年安徽博士科技论坛论文集[C];2006年

7 史磊磊;朱涛;陈方元;邓明;饶云江;;基于旋转折变型长周期光纤光栅对的高分辨率扭曲传感器[A];中国光学学会2011年学术大会摘要集[C];2011年

8 崔文涛;刘艳格;邰伯寅;王兵;;基于级联长周期光纤光栅的多参量传感器研究[A];中国光学学会2010年光学大会论文集[C];2010年

9 裴丽;董小伟;李彬;简伟;简水生;;聚合物包层长周期光纤光栅特性及应用[A];全国第十一次光纤通信暨第十二届集成光学学术会议(OFCIO’2003)论文集[C];2003年

10 王德法;陈冠群;施解龙;陈园园;;相移长周期光纤光栅的透射谱特性及其切趾[A];全国第十二次光纤通信暨第十三届集成光学学术会议论文集[C];2005年

相关博士学位论文 前10条

1 杨蕊竹;长周期光纤光栅的特性及传感应用的研究[D];吉林大学;2012年

2 李秋顺;基于消失波的长周期光纤光栅化学传感[D];吉林大学;2009年

3 姜明顺;长周期光纤光栅理论及传感技术研究[D];山东大学;2010年

4 王彦;长周期光纤光栅在智能结构中的应用研究[D];南京航空航天大学;2008年

5 王雪;双芯长周期光纤光栅制备方法及特性研究[D];哈尔滨工程大学;2010年

6 宋世德;长周期光纤光栅的特性及传感应用研究[D];大连理工大学;2006年

7 白志勇;新结构型长周期光纤光栅制作及特性研究[D];南开大学;2014年

8 王义平;新型长周期光纤光栅特性研究[D];重庆大学;2003年

9 苗飞;基于飞秒激光的长周期光纤光栅制备及其传感特性研究[D];山东大学;2012年

10 朱涛;特种长周期光纤光栅基础研究[D];重庆大学;2008年

相关硕士学位论文 前10条

1 周兵;长周期光纤光栅在结构健康监测中的应用研究[D];南京航空航天大学;2008年

2 朱烙,

本文编号:1804385


资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dianzigongchenglunwen/1804385.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户9c3cc***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com