硅基毫米波功率放大器研究与设计
发布时间:2018-04-27 02:25
本文选题:毫米波单片集成电路 + 功率放大器 ; 参考:《杭州电子科技大学》2015年硕士论文
【摘要】:在近几十年,无线通信技术随着电子技术的发展而得以迅速发展,但随之出现了在低频频段开始出现了频谱资源日益紧张。同时随着多媒体技术的发展,人们对无线通信系统的要求越来越高。不过,幸运的是毫米波频段的频谱资源丰富而且能够实现高速率传输,毫米波技术给无线通信研究提供了广阔的频谱资源空间,同时给无线通信带来了新的活力和更多的选择。其中60GHz技术以其频带宽、抗干扰力强、传输安全性高,超高速的数据传输能力等众多优点,成为下一代无线通信系统的发展方向,是学术界和工业界的研究热点。而当通信频率高于100GHz时,可提供高达10Gb/s的无线传输速率和更为紧凑的系统结构,易于多功能集成实现应用。当前,欧美、日本以及中国台湾的各大高校、研究机构以及各大消费电子产品公司纷纷开展60GHz以及高于100GHz频率技术的研究,取得了显著的成果。近年,国内外关于60GHz以及高于100GHz频率的硅基功率放大器的文献数量有了显著增长,电路性能也大幅提高。本文总结了60GHz和高于100GHz频率的硅基功率放大器的研究进展,探讨硅基毫米波功率放大器的挑战和设计方法,并对60GHz CMOS以及150GHz SiGe BiCMOS功率放大电路进行研究与设计。其内容简述如下:(1)本文调研了60GHz以及高于100GHz频率的硅基功率放大器的相关文献,归纳出电路的典型结构及技术指标。截止至2013年,IEEE报道的60GHz CMOS功率放大器的饱和输出功率从8dBm提高到超过20dBm,增益从5.2dB提高到近30dB,PAE从7%提高到了25%以上。而高于100GHz频率硅基的功率放大器的典型指标:饱和输出功率基本都在15dBm以内,增益大于10-25dB,PAE一般小于10%。截止到2013年,高于100GHz功率放大器的最优的指标能够达到:最高工作频率为260GHz,最高饱和输出功率为13.2dBm,最高增益为24.3dB,最高PAE为14.6%。(2)本文较为详细地讨论了功率放大器的基础理论,同时深入的调研针对硅基工艺下毫米波功率放大器设计的挑战以及深入的调研并详细探讨毫米波电路设计的方法。随着硅基工艺的不断进步,目前硅基工艺的有源器件截止频率fT已经能够达到300GHz,这使得硅基毫米波集成功率放大器的设计成为可能。但硅基工艺毫米波功率放大器的设计仍然存在诸多挑战。有源器件击穿电压低限制了毫米波功率放大器的输出功率硅基工艺高损耗加大了传输线的损耗,此外器件模型精确度不高也成为毫米波功率放大器的设计的一个巨大的挑战。针对这些不利因素,本文列举了目前多种能够一定程度上解决这些挑战的方法,例如:功率合成、逼近截止频率等设计方法。(3)本文设计了一款基于TSMC 90nm CMOS工艺的60GHz功率放大器。在此功率放大器的设计中,针对毫米波频段晶体管增益不够的情况,采用共源共栅结构和在第一级共源器件栅漏之间并联电感谐振掉MOS管寄生电容Cgd的方法来提高增益,并完成了流片加工和测试;针对测试性能不理想的情况进行了分析,找出了与仿真结果之间差异的原因所在,从而得出了一定的设计方法。(4)此外本文采用上文归纳总结的设计方法,还设计了一款基于IHP 0.13μm SiGe BiCOMS工艺的150GHz功率放大器。在150GHz的功率放大器的设计中,采取了差分结构和变压器功率合成的方法来提高放大器的输出功率。同时,电路采用共发射极结构,通过巴伦实现单转双输入以及双转单输出,实现功率分配、功率合成、阻抗匹配以及中间抽头实现偏置输入。在电路核心部分实现轴对称,这样较好的抑制共模信号。最后完成了电路、版图的设计以及优化,芯片面积为0.19mm2。本文较为全面地调研了60GHz和高于100GHz频率的硅基功率放大器的研究进展,详细地总结毫米波的特点、应用以及毫米波硅基电路的研究现状,探讨在毫米波频段设计功率放大器所面临的挑战和解决方法;在此基础上,设计了一款60GHz CMOS功率放大电路以及150GHz SiGe BiCOMS功率放大器,这为硅基工艺实现毫米波电路,特别是毫米波功率放大器奠定一定的基础。
[Abstract]:In recent decades, wireless communication technology has developed rapidly with the development of electronic technology. However, the frequency spectrum resources are becoming increasingly tense at the beginning of the low frequency band. With the development of multimedia technology, the demand for wireless communication system is getting higher and higher. Fortunately, the spectrum resources of the millimeter wave band are rich. And it can achieve high rate transmission. Millimeter wave technology provides a broad spectrum resource space for wireless communication research, and brings new vitality and more choices to wireless communication. 60GHz technology has become the next generation with its many advantages, such as its frequency bandwidth, strong anti-interference force, high transmission security, ultra high speed data transmission ability and so on. The development direction of the wireless communication system is a hot topic in the academic and industrial circles. When the communication frequency is higher than 100GHz, the wireless transmission rate of up to 10Gb/s and a more compact system structure are provided, and it is easy to realize the application of multi-function integration. Electronic products companies have carried out 60GHz and higher than 100GHz frequency technology research, and achieved remarkable results. In recent years, there has been a significant increase in the number of literatures about 60GHz and the frequency of the silicon based power amplifier higher than the 100GHz frequency at home and abroad, and the performance of the circuit has been greatly improved. This paper sums up the silicon based power amplification of the 60GHz and higher 100GHz frequencies. The research progress of the device, the challenge and design method of the silicon based millimeter wave power amplifier, and the research and design of 60GHz CMOS and 150GHz SiGe BiCMOS power amplifier. The contents are as follows: (1) this paper investigated the related literature of 60GHz and the silicon based power amplifier higher than the 100GHz frequency, and summed up the typical structure of the circuit. As of 2013, the saturated output power of the 60GHz CMOS power amplifier reported by IEEE increased from 8dBm to over 20dBm, the gain increased from 5.2dB to near 30dB, and PAE increased from 7% to more than 25%. The typical index of the power amplifier higher than the 100GHz frequency silicon based power amplifier is that the saturation and output power are basically within 15dBm, and the gain is greater than 10-. 25dB, PAE is generally less than 10%. until 2013. The best index of the 100GHz power amplifier can be achieved: the highest working frequency is 260GHz, the highest saturation output power is 13.2dBm, the highest gain is 24.3dB, the highest PAE is 14.6%. (2). This paper discusses the basic theory of the power amplifier in detail, and investigates the silicon base in depth. The challenge of the design of the millimeter wave power amplifier and the in-depth investigation and detailed discussion of the design method of the millimeter wave circuit. With the continuous progress of the silicon based process, the active device cut-off frequency fT of the silicon based process has been able to reach 300GHz, which makes the design of the silicon based millimeter wave integrated power amplifier possible. There are still many challenges in the design of the process millimeter wave power amplifier. The low breakdown voltage of the active device restricts the output power of the millimeter wave power amplifier. The high loss of the silicon base process increases the loss of the transmission line. In addition, the precision of the device model is also a huge challenge for the design of the millimeter wave power amplifier. Some disadvantages are listed in this paper, such as power synthesis, approximation cut-off frequency and so on. (3) a 60GHz power amplifier based on the TSMC 90nm CMOS process is designed. In the design of this power amplifier, the gain of the millimeter wave band transistors is not enough. In the case, a common source common gate structure and a parallel inductor that resonate the parasitic capacitance Cgd of the MOS tube between the gate leakage of the first common source device are used to improve the gain, and the flow sheet processing and testing are completed. The reasons for the difference between the simulation results and the simulation results are found out. (4) (4) in addition to the design method summarized above, a 150GHz power amplifier based on the 0.13 m SiGe BiCOMS process is designed. In the design of the power amplifier of the 150GHz, the difference structure and the transformer power synthesis method are adopted to raise the output power of the high amplifier. The emitter structure can realize the power allocation, the power synthesis, the impedance matching and the intermediate tap to realize the bias input through the Baren realization of the single turn double input and double rotation single output. The axis symmetry is realized in the core part of the circuit so that the common mode signal is suppressed well. Finally, the circuit, layout and optimization are completed. The area of the chip is 0.19mm2.. The research progress of the silicon based power amplifier of 60GHz and higher than 100GHz frequency is thoroughly investigated. The characteristics of the millimeter wave and the research status of the millimeter wave silicon based circuit are summarized in detail. The challenge and solution method for the design of the power amplifier in the millimeter wave band are discussed. On this basis, a 60GHz CMOS power is designed. Amplifying circuit and 150GHz SiGe BiCOMS power amplifier, this lays a foundation for the millimeter wave circuit, especially millimeter wave power amplifier, in silicon-based process.
【学位授予单位】:杭州电子科技大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TN722.75
【参考文献】
相关期刊论文 前3条
1 孙玲玲;文进才;刘军;高海军;王翔;;硅基太赫兹集成电路研究进展[J];微波学报;2013年Z1期
2 郭超;张文俊;余志平;;60GHz 11dBm CMOS功率放大器设计[J];半导体技术;2009年12期
3 彭洋洋;吴文光;王肖莹;隋文泉;;单片毫米波CMOS集成电路技术发展动态[J];微电子学;2009年05期
相关硕士学位论文 前5条
1 王岗;毫米波放大器研究与设计[D];杭州电子科技大学;2014年
2 郭丽丽;60GHz低噪声放大器研究与设计[D];杭州电子科技大学;2013年
3 马方s,
本文编号:1808766
本文链接:https://www.wllwen.com/kejilunwen/dianzigongchenglunwen/1808766.html