当前位置:主页 > 科技论文 > 电子信息论文 >

高阶球面单形—径向容积求积分卡尔曼滤波算法

发布时间:2018-05-01 07:14

  本文选题:容积卡尔曼滤波 + 高斯—拉盖尔求积分 ; 参考:《通信学报》2017年08期


【摘要】:为了进一步提高非线性卡尔曼滤波算法的估计精度,提出一种高阶球面单形—径向容积求积分卡尔曼滤波(HDSSRCQKF,high-degree spherical simplex-radial cubature quadrature Kalman filter)算法。将非线性函数的高斯加权积分分解为球面积分和径向积分,采用基于正则单形变换群的七阶球面单形准则计算球面积分,使用高阶高斯—拉盖尔求积分准则计算径向积分,推导出高阶球面单形—径向容积求积分准则。从该准则中提取出容积点及其相应权值的一般计算方法,并利用该计算方法给出非线性卡尔曼滤波框架下高阶球面单形—径向容积求积分卡尔曼滤波的具体计算步骤。数值仿真实验结果表明,所提算法具有比高阶容积卡尔曼滤波更高的估计精度,在信道估计与均衡、语音增强和混沌通信等领域具有一定的应用价值。
[Abstract]:In order to further improve the estimation accuracy of nonlinear Kalman filtering algorithm, a high-order spherical simplex and radial volume integral Kalman filtering algorithm named HDSSRCQKFhigh-degree spherical simplex-radial cubature quadrature Kalman filter) is proposed. The Gao Si weighted integral of nonlinear function is decomposed into spherical integral and radial integral. The seventh order spherical simplex criterion based on regular simplex transformation group is used to calculate the spherical integral, and the higher-order Gauss-Lagerre integral criterion is used to calculate the radial integral. The integration criterion of higher order spherical simplex and radial volume is derived. The general calculation method of volume point and its corresponding weight value is extracted from the criterion, and the concrete calculation steps of integral Kalman filtering of high-order spherical simplex and radial volume under the framework of nonlinear Kalman filter are given. The numerical simulation results show that the proposed algorithm has higher estimation accuracy than high-order volumetric Kalman filter, and has certain application value in the fields of channel estimation and equalization, speech enhancement and chaotic communication.
【作者单位】: 装备学院研究生院;装备学院光电装备系;
【基金】:国家高技术研究发展计划(“863”计划)基金资助项目(No.2015AA7026085)~~
【分类号】:TN713


本文编号:1828285

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dianzigongchenglunwen/1828285.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户a9093***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com