基于FPGA的硅微陀螺仪数字测控电路关键技术研究
发布时间:2018-05-04 02:23
本文选题:硅微陀螺仪 + FPGA ; 参考:《南京信息工程大学》2015年硕士论文
【摘要】:硅微陀螺仪是一种新型的MEMS惯性传感器,具有体积小、可靠性高、易于数字化、功耗低等优点,其在国民经济和国防军事领域具有广阔的应用和发展前景。因此,研究硅微陀螺仪测控技术对提高陀螺仪精度具有重要意义。针对传统硅微陀螺仪测控技术采用模拟电路实现具有易受干扰、受环境影响大等缺点,本文开展基于FPGA的硅微陀螺仪数字测控电路及其关键技术研究,研究工作主要包括:第一,结合硅微陀螺仪基本结构及其工作原理,分析了其在驱动和检测两模态下动力学方程,分析了静电驱动原理,为数字测控系统的设计奠定基础。第二,建立硅微陀螺仪数字闭环驱动-闭环检测控制系统,深入研究基于锁相环控制频率和自动增益控制幅度的闭环驱动原理以及基于正交、反馈校正的闭环检测控制方案,在此基础上,分别对两模态建立Matlab/Simulink仿真模型,并验证其可行性。第三,在理论分析方案基础上,利用Verilog HD L编写程序实现数字算法,主要包括DCO、数字PI、IIR数字滤波器以及温度补偿算法,设计并实现了以FPGA和高性能ADC、DAC为核心的硬件测控电路。第四,完成各个电路模块的调试,并对所研制的硅微陀螺仪数字测控电路进行性能测试,在变温条件下对零偏和标度因数进行了温度补偿实验,相比于补偿前,硅微陀螺仪各项性能得到显著提高,验证了本文所设计的软硬件电路的正确性,为后续进一步研究和应用奠定了基础。
[Abstract]:Silicon microgyroscope is a new type of MEMS inertial sensor, which has the advantages of small volume, high reliability, easy digitization, low power consumption and so on. It has broad application and development prospect in national economy and national defense military field. Therefore, it is of great significance to study the measurement and control technology of silicon microgyroscope to improve the precision of gyroscope. In view of the disadvantages of the traditional silicon microgyroscope measurement and control technology, such as easy to be interfered and greatly affected by the environment, the digital measurement and control circuit based on FPGA and its key technology are studied in this paper. The main works are as follows: first, combining the basic structure and working principle of silicon microgyroscope, the dynamic equations under the two modes of driving and detecting are analyzed, and the principle of electrostatic drive is analyzed, which lays a foundation for the design of digital measurement and control system. Secondly, the digital closed-loop drive-closed-loop detection control system of silicon microgyroscope is established. The closed-loop driving principle based on phase-locked loop control frequency and the amplitude of automatic gain control and the closed-loop detection control scheme based on orthogonal feedback correction are studied in depth. On this basis, the Matlab/Simulink simulation model is established for two modes, and its feasibility is verified. Thirdly, on the basis of theoretical analysis, the digital algorithm is realized by using Verilog HD L program, including DCO, digital PII-IIR filter and temperature compensation algorithm. The hardware measurement and control circuit based on FPGA and high performance FPGA is designed and implemented. Fourthly, the debugging of each circuit module is completed, and the performance of the digital measurement and control circuit of silicon microgyroscope is tested, and the temperature compensation experiment of zero offset and scale factor is carried out under the condition of variable temperature. The performances of silicon microgyroscope have been greatly improved, which verifies the correctness of the hardware and software circuits designed in this paper, and lays a foundation for further research and application.
【学位授予单位】:南京信息工程大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TP212;TN791
【参考文献】
相关期刊论文 前3条
1 李金力;刘文怡;彭旭峰;;基于FPGA的RS232异步串行口IP核设计[J];电子设计工程;2009年08期
2 凤瑞;裘安萍;施芹;苏岩;;双质量硅微机械陀螺固有频率温度特性研究[J];南京理工大学学报;2013年01期
3 周文闻;张嵘;周斌;陈志勇;;基于SOPC的单轴陀螺驱动环路设计[J];中国惯性技术学报;2009年01期
,本文编号:1841166
本文链接:https://www.wllwen.com/kejilunwen/dianzigongchenglunwen/1841166.html