氟化光敏聚合物光交叉复用集成波导芯片研制
本文选题:集成电路工艺 + 集成光波导器件 ; 参考:《吉林大学》2015年硕士论文
【摘要】:随着通信业务的繁荣发展,人们对带宽的需求变得更加迫切,为了加快实现超长距离超大容量通信系统的步伐,光交叉复用器(Interleaver)引起了人们的广泛关注并成为了密集波分复用领域的研究热点。与常见的波分复用器相比,光交叉复用器的信道间隔更小,更满足现代光纤通信系统对密集波分复用技术(DWDM)的要求,而将交叉复用器用于波分复用系统中既能够有效地减轻后续WDM器件对波长间隔要求的负担,同时达到了提高传输容量的目的。实现交叉复用技术的方法有多种,其中阵列波导光栅型(AWG)型交叉复用器具有信道数多、串扰小、信号畸变小、结构紧凑、易于集成和性能稳定等诸多优点,已成为新一代交叉复用产品研究和开发的热点。 本文对光交叉复用集成波导器件展开了研究。设计了一种基于阵列波导光栅结构的新型光交叉复用器件,并对其波导结构参数进行了仿真和优化。在集成波导芯片中引入电极控制结构,一方面实现对器件信道和信号波长的双重选择功能,另外也对制备工艺带来的阵列波导光栅中心波长漂移具有补偿作用。本论文中波导和电极的制备均采用的是CMOS集成电路制备工艺中的旋涂、光刻、刻蚀和真空蒸发工艺。本论文的主要工作可总结如下: (1)、提出了一种交叉复用集成波导模块,该模块在单芯片上混合集成了阵列波导光栅、多模干涉仪(MMI)和马赫曾德尔干涉(MZI)型热光开关。其中两级阵列波导光栅的信道间隔分别为0.8nm和1.6nm,能够对复合信号光中的奇数波长和偶数波长进行选择。同时,在阵列波导光栅和光开关中引入了控制电极,并对电极结构参数进行了计算和优化,以实现对芯片局部波导温度的精确控制,从而利用热光效应来实现对输出信道及波长的选择功能。 (2)、自主合成了一种有机-无机接枝改性聚甲基丙烯酸甲酯(PMMA)材料。这种有机-无机复合材料具有热稳定性好、折射率可调节、与硅工艺兼容性好等优势,,非常适合于制备热光器件。另外,对新型氟化光敏聚合物材料的波导制备工艺参数进行了摸索和优化,并利用直接光刻法获得了形貌良好的矩形波导结构。同时测试了材料的折射率调节范围,以及其在近红外区的吸收光谱特性,结果证明在光通讯波长范围内材料的吸收非常低,与常用的光刻胶材料SU-8相比,其光学损耗显著降低,这更加有利于降低集成波导芯片的传输损耗。 (3)、利用氟化光敏聚合物材料和有机-无机复合型材料分别作为波导的芯层和包层,采用集成电路制备工艺中典型的光刻、刻蚀和真空蒸发工艺完成了集成波导芯片的制备,并对其进行了测试。输入-输出单模光纤之间的总插入损耗在5.55dB-6.86dB范围内(对于单个信道),信道串扰约为-25dB。加载在阵列波导处的蛇形电极结构用于调控阵列波导光栅的输出波长矩阵,以实现集成波导芯片的波长信道选择功能,测得电极阻值约为800Ω,对于一级AWG和二级AWG来说,其传输波长矩阵实现一次行向量平移所需的驱动电功率分别为10.5mW和6.5mW(对于单个信道)。MZI型热光开关的电极阻值约为200Ω,测得开关的消光比为18.2dB,驱动功率约为8.6mW。
[Abstract]:With the prosperity and development of communication services, the demand for bandwidth becomes more urgent. In order to speed up the pace of realizing ultra long distance and super large capacity communication system, optical cross multiplexer (Interleaver) attracts people's attention and becomes a hot topic in the field of dense wavelength division multiplexing. The channel interval of the multiplexer is smaller and meets the requirements of the modern optical fiber communication system for dense wavelength division multiplexing (DWDM), and the application of the cross multiplexer to the wavelength division multiplexing system can not only effectively reduce the burden on the wavelength interval of the subsequent WDM devices, but also achieve the purpose of raising the transmission capacity. There are many methods, in which the array waveguide grating (AWG) type cross multiplexer has many advantages, such as many channels, small crosstalk, small signal distortion, compact structure, easy integration and performance stability. It has become a hot spot in the research and development of a new generation of cross multiplexed products.
The optical cross multiplexed integrated waveguide devices are studied in this paper. A new type of optical cross multiplexing device based on the array waveguide grating is designed, and the parameters of the waveguide structure are simulated and optimized. The electrode control structure is introduced in the integrated waveguide chip. On the one hand, the dual choice work of the channel and the signal wavelength is realized. In this paper, the preparation of waveguides and electrodes in this paper is used in the process of CMOS integrated circuit fabrication, such as spin coating, lithography, etching and vacuum evaporation. The main work of this paper can be summarized as follows:
(1) a cross multiplexed integrated waveguide module is proposed, which combines array waveguide grating, multimode interferometer (MMI) and Maher Del interference (MZI) type hot light switch on a single chip, in which the channel interval of the two stage arrayed waveguide grating is 0.8nm and 1.6nm, which can be used for odd and even wavelengths in the composite signal light. At the same time, the control electrode is introduced into the arrayed waveguide grating and optical switch, and the electrode structure parameters are calculated and optimized to realize the precise control of the local waveguide temperature of the chip, thus the selection function of the output channel and wavelength is realized by using the thermal optical effect.
(2) an organic-inorganic graft modified polymethyl methacrylate (PMMA) material has been synthesized independently. The organic inorganic composite has the advantages of good thermal stability, adjustable refractive index and good compatibility with the silicon process. It is very suitable for the preparation of thermo optical devices. In addition, the preparation process parameters of the novel fluorinated photosensitive polymer materials are prepared. A rectangular waveguide structure with good morphology was obtained by direct photolithography. The refractive index range of the material was measured and its absorption spectrum in the near infrared region was measured. The results showed that the absorption of the material was very low in the wavelength range of the optical communication. Compared with the common photoresist SU-8, the optical loss of the material was compared. The consumption is significantly reduced, which is more conducive to reducing the transmission loss of integrated waveguide chips.
(3) using the fluorinated photosensitive polymer material and the organic inorganic composite material as the core layer and the cladding of the waveguide respectively, the integrated circuit fabrication process is used for the typical lithography. The etching and vacuum evaporation process completed the preparation of the integrated waveguide chip and tested it. The total insertion loss between the input and output single mode fiber is 5.55. In the range of dB-6.86dB (for a single channel), the channel crosstalk is about -25dB. loaded in the array waveguide, the snake shaped electrode structure is used to regulate the output wavelength matrix of the arrayed waveguide grating to realize the wavelength channel selection function of the integrated waveguide chip. The measured electrode obstruction value is about 800 Omega. For the first order AWG and the two level AWG, the transmission wavelength moment is obtained. The driving power required for a row vector translation is 10.5mW and 6.5mW (for a single channel).MZI type.MZI thermo optical switch is about 200 Omega, the extinction ratio of the switch is 18.2dB, and the driving power is about 8.6mW..
【学位授予单位】:吉林大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TN252
【参考文献】
相关期刊论文 前10条
1 孙飞,刘润民,李国正;有效折射率法的研究[J];半导体光电;2001年01期
2 余辉,江晓清,杨建义,李锡华,王明华;有机聚合物热光器件热场的解析模型[J];半导体学报;2004年08期
3 周建华;游佰强;林静;;PMMA脊形光波导的设计与场分析[J];光电子技术;2006年04期
4 张瑞峰,葛春风,王书慧,丁永奎,胡智勇,李世忱;奇偶交错空分滤波器[J];光电子·激光;2002年06期
5 赵春柳,葛春风,丁镭,蒙红云,周广,杨石泉,董新永,董孝义;新兴光子器件——Interleaver[J];光通信技术;2002年04期
6 原荣;;阵列波导光栅(AWG)器件及其应用(本期优秀论文)[J];光通信技术;2010年01期
7 李会士,黄河振;基于双折射晶体的光交叉波分复用器[J];光学技术;2001年05期
8 孙一翎,江晓清,王明华;多模干涉耦合器一般成像位置分析[J];光学学报;2004年06期
9 时尧成,戴道锌,何赛灵;一种适用于任意折射率分布的等效折射率方法[J];光学学报;2005年01期
10 徐键,夏海平,张约品,章践立,王金浩;有机-无机复合ZrO_2-SiO_2平面光波导[J];光学学报;2005年04期
相关博士学位论文 前2条
1 万莹;用于光波导材料的可直接紫外写入的含氟聚合物的研究[D];吉林大学;2011年
2 陈长鸣;硅基聚合物平面光波导器件的基础研究[D];吉林大学;2010年
本文编号:1846548
本文链接:https://www.wllwen.com/kejilunwen/dianzigongchenglunwen/1846548.html