极化库仑场散射对GaN基电子器件栅源和栅漏寄生电阻的影响研究
本文选题:AlGaN/GaN高电子迁移率晶体管 + 极化库仑场散射 ; 参考:《山东大学》2017年硕士论文
【摘要】:AlGaN/GaN高电子迁移率晶体管(AlGaN/GaN HEMTs)具有很多优秀的性能特性,例如高击穿场强、高输出功率、高饱和电子漂移速度。此外,AlGaN/GaN异质结材料的自发和压电极化效应使其在不掺杂的情况下,仍可产生密度高达1013cm-2的二维电子气,因此在高频、大功率集成电路中的应用十分广泛。随着新器件结构和新器件工艺的运用,AlGaN/GaN HEMTs器件性能越来越接近氮化镓材料物理特性的极限。随着对器件内部等效电路研究逐渐深入,最近研究人员发现器件非本征参数寄生电阻严重影响器件的高频性能和可靠性。其中器件在大信号下的截止振荡频率fT和非本征跨导gm,严重受制于寄生电阻,制约着器件在噪声容限、开态电阻和传输延时时间等指标上的进一步优化。为了解寄生电阻的产生原因和作用机制,本文对沟道二维电子气电子在沟道中输运所受的主要散射作用进行讨论,其中包括极化库仑场(PCF)散射、极化光学声子散射、界面粗糙度散射和压电散射,并重点就PCF散射进行研究。PCF散射与栅源偏压、源漏偏压和栅面积均相关,导致栅源和栅漏寄生电阻RS和RD也与栅源偏压、源漏偏压和栅面积相关,从而对应电流-电压(I-V)输出特性曲线的线性区和饱和区R和RD也不同。本论文分别研究了 AlGaN/GaN HEMTs器件线性区寄生电阻RS和饱和区寄生电阻RS与RD,研究了线性区RS与栅长和正向栅源偏压的关联关系,并研究得到了饱和区确定RS和RD的方法。我们制备出不同栅面积、不同栅源间距的AlGaN/GaN HEMTs,在不同外加栅源偏压条件下测量出寄生电阻,并对器件沟道内各种散射机制展开分析。最后,经过散射理论模型计算的寄生电阻数值与实验测试值的较好拟合证实了 PCF散射是Rs的重要影响因素,AlGaN/GaN HEMTs的寄生电阻与栅源偏压、源漏偏压和栅面积密切相关。具体包括以下内容:1.极化库仑场散射对器件线性区栅源沟道寄生电阻Rs的影响器件工艺之后,器件正常欧姆接触退火工艺和栅极外加偏压会改变AlGaN/GaN异质界面处的极化电荷均匀分布状态,导致附加极化电荷的产生,引起PCF散射。经TLM法测试,我们发现相同衬底上不同测试区域的器件欧姆接触存在差异,表明同一片衬底上制作的欧姆接触并不完全一致。欧姆接触的质量差异会干扰我们对器件在外加偏压时栅下AlGaN势垒层区域处由于逆压电效应产生的附加极化电荷的研究。为了减小欧姆接触质量差异的影响,我们设计了共用源极欧姆接触的电子器件。由于同个台面上的左右两个栅极接触共用同一个源极欧姆接触,从而消除了不同欧姆接触质量差异的影响,由此可准确研究栅面积和栅源偏压对RS的影响。在欧姆接触下方区域,金属原子扩散作用减弱了AlGaN势垒层的压电极化强度,并且欧姆接触下方的附加极化电荷△σ1是一个与栅源偏压无关的负值。在VGS0的情况下,栅下区域引入的随栅源偏压变化且为正值的△σ3和欧姆区域引入的不变且为负值的△σ1共同决定PCF散射势。当VGS增大,数值为正且增大的△σ3逐渐抵消数值为负且不变的Aσ1,最终Aσ3成为PCF散射势的主导因素。对于同个样品内共用同一源极欧姆接触的两个AlGaN/GaN HEMTs器件,使用栅探针法测量RS时保持VGS在同一变化范围以保证各器件中的栅下区域的△σ3相等。栅源间距相同,对于更大栅面积的器件栅下附加极化电荷总量更大,增强了 PCF散射势的强度进而导致RS的增大。栅面积相同,器件栅下附加极化电荷总量相同,然而更大栅源间距的器件附加散射势作用区域增大,降低了散射的强度,所以RS随VGS变化幅度减小。最后,使用PCF散射理论模型,我们计算了各尺寸器件不同偏压下的寄生电阻RS,并与器件寄生电阻的测试值进行对比,较好的拟合效果证实了用PCF散射理论解释RS形成机制的合理性,也明确表明AlGaN/GaN HEMTs器件线性区RS与栅源偏压和栅面积密切相关。2.极化库仑场散射对长栅长器件饱和区寄生电阻的影响PCF散射是影响AlGaN/GaN HEMTs器件性能的重要散射机制。然而对于长栅长器件,对不同静态偏置状态下的饱和区寄生沟道电阻的研究并没有考虑PCF散射的影响。由此,考虑PCF散射,并得到AlGaN/GaN HEMTs器件饱和区寄生电阻对提升器件特性至关重要。与深亚微米栅长器件不同,长栅长器件中源漏之间的电场不能使沟道载流子达到饱和漂移速度。因此,短栅长器件栅下的线性电势分布并不适用于长栅长器件。长栅长器件的沟道电势分布情况需要进一步研究。其一,在I-V输出特性曲线中选取VGS=-3V-0V,VDS=8V的静态偏置点,并使用改进的栅探针法测得器件的RS和RD。其二,根据宽禁带半导体在制备肖特基栅极下的电荷控制模型,饱和区(VDS= 8V)时的栅下沟道电势分布被分为两个部分。缓变沟道近似沟道区域Ⅰ和夹断沟道区域Ⅱ分别对应栅下电势从VC(0)变到Vknee和从Vknee变到VC(L)的区域。VC(0)和VC(L)分别是源、漏测栅极边缘处的沟道电势,Vknee近似认为是沟道恰好夹断的沟道电势。然后,使用PCF散射理论分析和确定AlGaN/GaN HEMTs器件沟道各处的附加极化电荷△σ的分布及其决定的附加散射势。最后,综合考虑极化光学声子散射、界面粗糙度散射、压电散射和极化库仑场散射在内的各种散射机制,模拟计算出不同偏置状态下的RS和RD。理论计算结果和测试得到的RS和RD呈现较好的一致性,证明了理论计算的准确性。对于样品3中的器件,欧姆接触下方区域的附加极化电荷△σ1是一个与栅源偏压无关的负值。各偏置状态下的VGS为负值,因此栅下区域附加极化电荷△σ3为负值。取值为负值的△σ1和△σ3共同确定了 PCF附加散射势。各测试点的栅源偏压变化范围是-3V到0V,逐渐减小的△σ3和固定不变的△σ1减弱了 PCF散射势的强度,导致RS和RD的减小。另外,对于其他几种散射机制,非栅极沟道区域内电子温度Te和二维电子气密度n2D决定了它们的散射强度。由于样品3中器件的电流较小不足以导致载流子明显的热声子效应和自热效应。常温条件下,栅源和栅漏之间的沟道处的n2D在不同栅源偏压VGS下为固定值。因此,各不同静态偏置状态下RS和RD的差异只能归因于PCF散射势的差异。这些研究结果证实由于PCF散射,AlGaN/GaN HEMTs器件寄生电阻RS和RD与栅源和源漏偏压相关;研究得到的确定AlGaN/GaN HEMTs器件饱和区寄生电阻RS和RD的方法是正确可行的方法。
[Abstract]:The AlGaN/GaN high electron mobility transistor (AlGaN/GaN HEMTs) has many excellent performance characteristics, such as high breakdown field strength, high output power and high saturation electron drift speed. In addition, the spontaneous and piezoelectric polarization effect of AlGaN/GaN heterojunction materials makes it still produce a two-dimensional electron gas with a density up to 1013cm-2 in the absence of doping. This is widely used in high frequency and high-power integrated circuits. With the application of new device structure and new device technology, the performance of AlGaN/GaN HEMTs devices is getting closer to the limit of physical properties of gallium nitride materials. With the study of the internal equivalent circuit of the device, the recent researchers found that the device is not the intrinsic parameter parasitic resistance. The high frequency performance and reliability of the device are seriously affected. The cut-off oscillation frequency fT and the non eigentransconductance GM under the large signal are seriously affected by the parasitic resistance, which restricts the further optimization of the device in the noise tolerance, open state resistance and transmission delay time. In order to solve the cause and mechanism of the generation resistance, this paper is concerned. The main scattering effects of the channel two-dimensional electron gas electron transport in the channel are discussed, including polarized Coulomb field (PCF) scattering, polarization optical phonon scattering, interface roughness scattering and piezoelectric scattering, and the study of PCF scattering is focused on.PCF scattering with gate source bias, source leakage bias and gate area, leading to gate source and grid. The leakage parasitic resistance RS and RD are also related to the gate bias voltage, the source leakage bias and the gate area, thus the linear region of the current voltage (I-V) output characteristic curve and the saturated zone R and RD are different. This paper studies the parasitic resistance RS and the parasitic resistance RS and RD of the linear region of the AlGaN/GaN HEMTs device, respectively, and studies the linear region RS and the gate length and the forward direction. The relationship between the bias voltage of the gate and the method of determining the RS and RD in the saturation area is studied. We have prepared the AlGaN/GaN HEMTs with different gate area and different gate spacing, and measured the parasitic resistance under the different bias voltage of the grid source, and analyzed the scattering mechanism in the channel. Finally, the scattering theory model was used to calculate the distribution. The good fitting of the value of the raw resistance and the test test confirmed that the PCF scattering is an important factor in the Rs. The parasitic resistance of the AlGaN/GaN HEMTs is closely related to the grid source bias, the source leakage bias and the gate area. The following contents are included: 1. the influence of the polarizing Coulomb scattering on the parasitic resistance Rs of the linear gate channel of the device, after the device process, The normal ohm contact annealing process and the grid applied bias will change the uniform distribution of polarization charge at the AlGaN/GaN heterointerface and lead to the generation of the additional polarized charge and cause the PCF scattering. By the TLM method, we find that the ohm contact of the devices on the same substrate is different, indicating that the same substrate is made on the same substrate. The ohm contact is not exactly the same. The mass difference of ohm contact interferes with the study of the additional polarization charge caused by the reverse piezoelectric effect at the AlGaN barrier layer under the applied bias voltage. In order to reduce the influence of the mass difference in ohmic contact, we designed the electronic devices that share the ohmic contact with the source. The influence of different ohm contact mass differences is eliminated by sharing the same source ohm contact with the left and right two grids on the same platform, which can accurately study the effect of gate area and gate bias on RS. In the area below ohm contact, the diffusion of metal atoms weakens the piezoelectric polarization of the AlGaN barrier layer. The additional polarized charge under the contact of the ohm is a negative value independent of the grid source bias. In the case of VGS0, the PCF scattering potential is determined by the variation of the grid source bias and the positive delta sigma 3 and the ohm region introduced in the lower gate region. When VGS increases, the value is positive and increasing delta sigma 3 gradually counteracts the number. The A sigma 1 is negative and constant, and the final A sigma 3 becomes the leading factor in the PCF scattering potential. For the two AlGaN/GaN HEMTs devices that share the same source ohm contact in the same sample, the VGS in the same range is kept in the same range by the gate probe method to ensure that the delta 3 in the sub gate area of the devices is equal. The gap between the gate source is the same, and the larger grid is for the larger grid. The total amount of additional polarized charge under the area of the device is greater, which increases the intensity of the PCF scattering potential and leads to the increase of the RS. The gate area is the same, the total amount of the additional polarized charge under the gate is the same. However, the additional scattering potential area of the device with larger gate spacing increases and the intensity of the scattering is reduced, so the amplitude of RS decreases with the VGS. Finally, the amplitude of the scattering is reduced. Using the PCF scattering theory model, we calculated the parasitic resistance RS under the different bias voltage of each size device, and compared with the test values of the parasitic resistance of the device. The better fitting results confirmed the rationality of the interpretation of the RS formation mechanism by the PCF scattering theory, and clearly indicated that the RS in the linear region of the AlGaN/GaN HEMTs device is biased with the gate source and the gate area density. The influence of.2. polarizing Coulomb scattering on the parasitic resistance of the long gate long device saturation region PCF scattering is an important scattering mechanism affecting the performance of AlGaN/GaN HEMTs devices. However, for long gate long devices, the study of the parasitic channel resistance in the saturated zone of different static bias States does not take into account the effect of PCF scattering. Thus, PCF dispersion is considered. It is important to shoot and obtain the parasitic resistance of the saturation region of the AlGaN/GaN HEMTs device. Unlike the deep sub micron gate long devices, the electric field between the source and leakage of the long gate long devices can not make the channel carrier reach the saturation drift velocity. Therefore, the linear potential distribution under the short gate grid is not suitable for long gate long devices. The distribution of channel potential in the long device needs further study. First, the VGS=-3V-0V, VDS=8V static bias point is selected in the I-V output characteristic curve, and the RS and RD. of the device are measured by the improved gate probe method. The charge control model under the wide band gap semiconductor under the Schottky gate and the saturation zone (VDS= 8V) is under the grid. The distribution of the channel potential is divided into two parts. The approximate channel region I and the clip channel region II correspond to the grid potential from VC (0) to Vknee and the region.VC (0) and VC (L) from Vknee to VC (L) respectively as the source, and the channel potential at the edge of the gate is missed, and Vknee approximately considers that the channel is exactly clipped trench potential. Then, so that The PCF scattering theory is used to analyze and determine the distribution of the additional polarization charge and the additional scattering potential of the additional polarized charge in the channel of the AlGaN/GaN HEMTs device. Finally, a variety of scattering mechanisms, such as polarization optical phonon scattering, interfacial roughness scattering, piezoelectric scattering and polarization Coulomb scattering, are considered. The theoretical calculation results of RS and RD. are in good agreement with the tested RS and RD, which proves the accuracy of the theoretical calculation. For the device in the sample 3, the additional polarized charge in the area below the ohm contact delta 1 is a negative value independent of the gate bias voltage. The VGS in each bias state is negative, so the polarizing electricity in the lower grid region is attached. The negative value of delta sigma 3 is negative. The negative value delta sigma 1 and delta 3 jointly determine the PCF additional scattering potential. The variation range of the gate source bias of each test point is -3V to 0V, the decreasing delta sigma 3 and the fixed delta sigma 1 weaken the intensity of the PCF scattering potential, resulting in the decrease of RS and RD. In addition, for several other scattering mechanisms, the non grid channel region The internal electron temperature Te and the two-dimensional electron gas density n2D determine their scattering intensity. Because the small current in the sample 3 is not enough to lead to the apparent thermal phonon effect and the self heat effect of the carrier. Under the normal temperature condition, the n2D between the gate and the gate leakage channel is fixed under the bias voltage of different gate sources. Therefore, the different static biasing. The difference between RS and RD can only be attributed to the difference of PCF scattering potential. These results confirm that due to PCF scattering, the parasitic resistance RS and RD of AlGaN/GaN HEMTs devices are related to the gate source and source leakage bias, and the method to determine the parasitic resistance RS and RD is a correct and feasible method to determine the saturation zone resistance of AlGaN/GaN HEMTs devices.
【学位授予单位】:山东大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TN386
【相似文献】
相关期刊论文 前10条
1 姚真瑜;吕雪芹;张保平;;GaN基光栅外腔半导体激光器研究进展[J];微纳电子技术;2013年10期
2 陈勇波;周建军;徐跃杭;国云川;徐锐敏;;GaN高电子迁移率晶体管高频噪声特性的研究[J];微波学报;2011年06期
3 张保平;蔡丽娥;张江勇;李水清;尚景智;王笃祥;林峰;林科闯;余金中;王启明;;GaN基垂直腔面发射激光器的研制[J];厦门大学学报(自然科学版);2008年05期
4 汪连山,刘祥林,岳国珍,王晓晖,汪度,陆大成,王占国;N型GaN的持续光电导[J];半导体学报;1999年05期
5 赵丽伟;滕晓云;郝秋艳;朱军山;张帷;刘彩池;;金属有机化学气相沉积生长的GaN膜中V缺陷研究[J];液晶与显示;2006年01期
6 张进城;董作典;秦雪雪;郑鹏天;刘林杰;郝跃;;GaN基异质结缓冲层漏电分析[J];物理学报;2009年03期
7 陈裕权;;欧洲通力合作发展GaN技术[J];半导体信息;2009年04期
8 张金风;郝跃;;GaN高电子迁移率晶体管的研究进展[J];电力电子技术;2008年12期
9 唐懿明;;电注入连续波蓝光GaN基垂直腔面发射激光器[J];光机电信息;2008年08期
10 Tim McDonald;;基于GaN的功率技术引发电子转换革命[J];中国集成电路;2010年06期
相关会议论文 前10条
1 陈勇波;周建军;徐跃杭;国云川;徐锐敏;;GaN高电子迁移率晶体管高频噪声特性的研究[A];2011年全国微波毫米波会议论文集(下册)[C];2011年
2 金豫浙;曾祥华;胡益佩;;γ辐照对GaN基白光和蓝光LED的光学和电学特性影响[A];二00九全国核反应会暨生物物理与核物理交叉前沿研讨会论文摘要集[C];2009年
3 魏萌;王晓亮;潘旭;李建平;刘宏新;肖红领;王翠梅;李晋闽;王占国;;高温AlGaN缓冲层的厚度对Si(111)基GaN外延层的影响[A];第十一届全国MOCVD学术会议论文集[C];2010年
4 王文军;宋有庭;袁文霞;曹永革;吴星;陈小龙;;用Li_3N和Ga生长块状GaN单晶的生长机制[A];第七届北京青年科技论文评选获奖论文集[C];2003年
5 刘福浩;许金通;王玲;王荣阳;李向阳;;GaN基雪崩光电二极管及其研究进展[A];第十届全国光电技术学术交流会论文集[C];2012年
6 王曦;孙佳胤;武爱民;陈静;王曦;;新型硅基GaN外延材料的热应力模拟[A];第六届中国功能材料及其应用学术会议论文集(10)[C];2007年
7 高飞;熊贵光;;GaN基量子限制结构共振三阶极化[A];第五届全国光学前沿问题研讨会论文摘要集[C];2001年
8 凌勇;周赫田;朱星;黄贵松;党小忠;张国义;;利用近场光谱研究GaN蓝光二极管的杂质发光[A];第五届全国STM学术会议论文集[C];1998年
9 王连红;梁建;马淑芳;万正国;许并社;;GaN纳米棒的合成与表征[A];第六届中国功能材料及其应用学术会议论文集(6)[C];2007年
10 陈宠芳;刘彩池;解新建;郝秋艳;;HVPE生长GaN的计算机模拟[A];第十六届全国半导体物理学术会议论文摘要集[C];2007年
相关重要报纸文章 前2条
1 银河证券 曹远刚;春兰股份 开发GaN 又一方大[N];中国证券报;2004年
2 ;松下电器采用SiC基板开发出新型GaN系高频晶体管[N];中国有色金属报;2003年
相关博士学位论文 前10条
1 赵景涛;GaN基电子器件势垒层应变与极化研究[D];山东大学;2015年
2 毛清华;高光效硅衬底GaN基大功率绿光LED研制[D];南昌大学;2015年
3 陈浩然;太赫兹波段GaN基共振隧穿器件的研究[D];西安电子科技大学;2015年
4 田媛;HVPE生长自支撑GaN单晶及其性质研究[D];山东大学;2016年
5 贾秀玲;用于饮用水中有害阴离子检测的GaN基HEMT传感器的研究[D];南京大学;2016年
6 张恒;GaN基Ⅲ族氮化物外延生长及相关器件的研究[D];山东大学;2017年
7 龚欣;GaN异质结双极晶体管及相关基础研究[D];西安电子科技大学;2007年
8 徐波;GaN纳米管的理论研究及GaN紧束缚势模型的发展[D];中国科学技术大学;2007年
9 李亮;GaN基太赫兹器件的新结构及材料生长研究[D];西安电子科技大学;2014年
10 王虎;蓝宝石衬底上AlN薄膜和GaN、InGaN量子点的MOCVD生长研究[D];华中科技大学;2013年
相关硕士学位论文 前10条
1 徐新兵;基于GaN纳米线铁电场效应晶体管及相关电性能[D];华南理工大学;2015年
2 周金君;温度对GaN(0001)表面生长吸附小分子SrO、BaO和Ti0_2影响的理论研究[D];四川师范大学;2015年
3 艾明贵;星载GaN微波固态功率放大器的研究[D];中国科学院研究生院(空间科学与应用研究中心);2015年
4 王玉堂;Virtual Source模型模拟分析GaN基电子器件特性研究[D];山东大学;2015年
5 井晓玉;垒结构对硅衬底GaN基绿光LED性能的影响[D];南昌大学;2015年
6 徐政伟;硅衬底GaN基LED光电性能及可靠性研究[D];南昌大学;2015年
7 肖新川;GaN微波宽带功率放大器的设计与实现[D];电子科技大学;2014年
8 郭洁;Ce掺杂GaN纳米结构的制备及物性研究[D];新疆大学;2015年
9 尹成功;毫米波GaN基HEMT小信号建模和参数提取[D];电子科技大学;2014年
10 冯嘉鹏;GaN基HEMT器件的性能研究与设计优化[D];河北工业大学;2015年
,本文编号:1848057
本文链接:https://www.wllwen.com/kejilunwen/dianzigongchenglunwen/1848057.html