传输矩阵法在行波管内部反射引起的增益波动计算中的应用
本文选题:传输矩阵法 + 小信号增益 ; 参考:《物理学报》2016年12期
【摘要】:本文分析了由于行波管慢波结构制造误差引入的多个不连续点对小信号增益的影响.行波管内部反射对增益波动的影响,须采用考虑反射波的四阶模型进行分析,用传输矩阵法对节点处的自左至右入射和自右至左入射两种散射类型建立传输矩阵,研究在不同空间电荷参量下,慢波电路的单个反射节点以及慢波电路的皮尔斯速度参量b和增益参量C的多个随机分布不连续性对行波管小信号增益的影响,计算结果与Chernin模型具有很好的一致性.并以G波段行波管为例分析了慢波结构周期长度分布有两个不连续点和周期长度的多个随机分布不连续性带来的小信号增益波动.结果表明,制造误差越大,周期长度分布的两个不连续点相距越远,小信号增益波动越大,多个小的不连续性可以引起较大的增益波动.
[Abstract]:In this paper, the influence of several discontinuous points on the small signal gain caused by the manufacturing error of the slow-wave structure of TWT is analyzed. The effect of reflection on gain fluctuation in TWT should be analyzed by using a fourth-order model considering reflected waves. The transfer matrix is established by using the transfer matrix method for the scattering types from left to right and from right to left incident at nodes. The effects of single reflection node of slow wave circuit, Pierce velocity parameter b of slow wave circuit and multiple random distribution discontinuities of gain parameter C on the small signal gain of TWT are studied under different space charge parameters. The results are in good agreement with the Chernin model. Taking G-band TWT as an example, the small signal gain fluctuation caused by several random discontinuities with two discontinuous points and periodic length in the periodic length distribution of slow wave structure is analyzed. The results show that the greater the manufacturing error, the longer the distance between the two discontinuous points of the period length distribution, the larger the gain fluctuation of small signal, and the larger the gain fluctuation can be caused by multiple small discontinuities.
【作者单位】: 中国科学院电子学研究所;
【基金】:国家自然科学基金青年科学基金(批准号:61401427)资助的课题~~
【分类号】:TN124
【相似文献】
相关期刊论文 前10条
1 王自成;王莉;李海强;戴志浩;李镇淮;宋培德;杨勇;;引起行波管增益幅度相位波动的一种原因[J];真空电子技术;2006年02期
2 梁国恩;解安国;;行波管关断方式对应用系统可靠性的影响[J];电子工程师;2007年05期
3 钟国俭;;行波管失效分析及其发射机可靠性的提高[J];雷达与对抗;2007年03期
4 张勇;何小琦;宋芳芳;;行波管可靠性研究探讨[J];电子质量;2008年06期
5 刘军华;;不断发展中的行波管技术[J];真空电子技术;2010年04期
6 王忠林;冯进军;;行波管研制知识管理框架[J];真空电子技术;2011年01期
7 官朝晖;;行波管技术现状与发展趋势[J];真空电子技术;2011年06期
8 王军军;陈晶晶;;行波管发射机调试探究[J];无线互联科技;2012年07期
9 李卓成;;国外空间行波管放大器现状与发展[J];空间电子技术;2012年04期
10 田志仁;;低噪声行波管的晚近发展[J];真空电子技术;1962年04期
相关会议论文 前10条
1 苏小保;姚刘聪;樊会明;;栅控行波管栅发射的产生及抑制[A];中国电子学会真空电子学分会第十三届学术年会论文集(下)[C];2001年
2 范培云;冯西贤;;空间行波管应用进展及前景[A];中国电子学会真空电子学分会第十九届学术年会论文集(上册)[C];2013年
3 陈宁;;行波管可靠性预计模型研究[A];中国电子学会真空电子学分会第十九届学术年会论文集(上册)[C];2013年
4 孙添飞;李想;孙萌;倪盈盛;;一种大功率脉冲行波管热态输出驻波比的测量方法[A];第八届华东三省一市真空学术交流会论文集[C];2013年
5 葛永基;陈淑华;;应用微机的行波管扫频热测系统[A];1985年全国微波会议论文集[C];1985年
6 赵洪;罗马奇;陈炳荣;;行波管测量的行波形成新算法[A];2010’中国西部声学学术交流会论文集[C];2010年
7 陈银杏;邬显平;;TWT中的混沌现象的实验观察[A];中国电子学会真空电子学分会第十二届学术年会论文集[C];1999年
8 宫玉彬;王文祥;;脊加载环板行波管的二维非线性理论研究[A];中国电子学会真空电子学分会第十二届学术年会论文集[C];1999年
9 蔡绍伦;;卫星地面站用通信行波管的高频设计[A];中国电子学会真空电子学分会第十一届学术年会论文集[C];1997年
10 李庆绩;赵士录;;增加行波管线性工作范围的研究[A];中国电子学会真空电子学分会第十一届学术年会论文集[C];1997年
相关重要报纸文章 前2条
1 刘欣;新型大功率行波管通过设计定型鉴定[N];经济参考报;2003年
2 山东 金明杰 马存兵 郎东风;2GC 2WH-01型微波发信系统的技术改造[N];电子报;2006年
相关博士学位论文 前10条
1 颜胜美;多注太赫兹折叠波导行波管技术研究[D];中国工程物理研究院;2015年
2 刘国;G波段带状束返波管及Ku波段带状束行波管高频结构研究[D];电子科技大学;2015年
3 诸葛天祥;新型平面型级联行波管研究[D];电子科技大学;2015年
4 李建清;行波管三维非线性理论及其网络并行计算[D];电子科技大学;2003年
5 李斌;行波管幅相一致特性研究[D];电子科技大学;2003年
6 黎泽伦;多注行波管慢波系统的研究[D];合肥工业大学;2008年
7 彭维峰;行波管注波互作用时域理论与通用非线性模拟技术研究[D];电子科技大学;2013年
8 王少萌;径向束行波管的研究[D];电子科技大学;2013年
9 何俊;毫米波新型曲折波导行波管的研究[D];电子科技大学;2010年
10 刘漾;新型角向周期加载圆波导行波管的研究[D];电子科技大学;2012年
相关硕士学位论文 前10条
1 刘之畅;高可靠行波管结构分析技术研究[D];电子科技大学;2011年
2 李鹏;大功率行波管及材料的显微研究[D];电子科技大学;2012年
3 高志强;基于CAD技术的毫米波行波管研究和设计[D];电子科技大学;2015年
4 林艺文;行波管主要部件的多点温度测量与热分析技术[D];东南大学;2015年
5 沈孟;曲折线行波管中平面电子枪设计及其整管仿真[D];东南大学;2015年
6 刘雪梅;超宽带大功率行波管的优化设计[D];电子科技大学;2010年
7 李静;空间行波管的热特性分析及其仿真平台的开发[D];合肥工业大学;2010年
8 刘瑞奇;宽带行波管中功率凹陷抑制的研究[D];电子科技大学;2011年
9 曹林林;K波段空间行波管线性化器技术研究[D];电子科技大学;2011年
10 覃志东;环板行波管注波互作用及热力学特性研究[D];电子科技大学;2002年
,本文编号:1878657
本文链接:https://www.wllwen.com/kejilunwen/dianzigongchenglunwen/1878657.html