当前位置:主页 > 科技论文 > 电子信息论文 >

基于LTCC技术的频谱监测设备接收机滤波器组的设计与实现

发布时间:2018-05-25 03:45

  本文选题:LTCC技术 + 频谱监测设备 ; 参考:《电子科技大学》2017年硕士论文


【摘要】:随着电磁环境日益复杂,频谱监测设备的应用场合愈发丰富,用户对其小型化和便携性的要求也愈发迫切。因此,对其重要射频子系统——接收机中占据大量空间的无源滤波器的小型化设计迫在眉睫。与常用于接收机的腔体、微带、LC和声表滤波器相比,LTCC(Low Temperature Co-fired Ceramic,LTCC,低温共烧陶瓷)滤波器体积优势巨大,稳定性和集成度很高。基于以上优点,本文设计并实现了基于LTCC技术的频谱监测设备接收机的预选滤波器和中频滤波器组。在综合频谱监测设备接收机整机性能和LTCC滤波器本身的工艺特点的基础上,计算出了LTCC预选和中频滤波器的设计指标要求。随后以指标要求为目标通过理论推导得出滤波器谐振单元的谐振频率和它们之间的耦合系数。在此基础上,通过场路结合的方法对滤波器的结构进行初步设计,再通过电磁仿真软件ADS和HFSS等对滤波器谐振单元的谐振频率、无载Q值以及它们之间的耦合系数等关键参数进行大量的迭代运算,最终得到最优化的滤波器结构。其中,预选滤波器主要采用了多层梳状线结构和多层矩形环结构。通过一些创新性的设计,例如M形梳状谐振器排列、改进型封装构造和多层谐振环交错排列等,优化了滤波器的多项参数。中频滤波器主要采用集总参数形式的内埋置LC电路结构。研究了嵌套型内埋置元件的设计方法,并做了一些结构上的创新。在上述设计工作之外,制作了一套LTCC滤波器的PCB测试夹具。最终实现了通带频率范围为3.9~4.9GHz、4.8~5.8GHz和5.5~6.3GHz等三个频段的预选滤波器组和通带频率范围为510~610MHz和DC~2GHz等两个频段的中频滤波器组。测试结果显示,这些滤波器在通带范围内的插入损耗和驻波比均能够达到设计要求。总体来说,除中频低通滤波器的高端带外抑制稍差外,这些滤波器的性能良好,尺寸优势明显。测试结果证实了设计的可行性,也说明该设计具有一定的工程应用价值。
[Abstract]:With the increasing complexity of electromagnetic environment, the application of spectrum monitoring equipment is becoming more and more abundant, and the demand of users for its miniaturization and portability is becoming more and more urgent. Therefore, it is urgent to miniaturize the passive filter which occupies a large amount of space in the receiver, which is an important RF subsystem. Compared with the conventional cavity, microstrip LC and acoustic meter filter, the LTCC low Temperature Co-fired ceramic (low temperature co-fired ceramic) filter has a large volume advantage, high stability and high integration. Based on the above advantages, this paper designs and implements the pre-selected filter and if filter bank of the spectrum monitoring equipment receiver based on LTCC technology. On the basis of synthesizing the performance of the receiver of the spectrum monitoring equipment and the technological characteristics of the LTCC filter itself, the design requirements of the LTCC pre-selection and if filter are calculated. Then the resonant frequency of the resonant unit and the coupling coefficient between them are derived by theoretical derivation with the target of the target. On this basis, the structure of the filter is preliminarily designed by combining the field and circuit, and the resonant frequency of the resonant unit of the filter is obtained by the electromagnetic simulation software, such as ADS and HFSS, etc. The key parameters such as unloaded Q value and coupling coefficient between them are iterated and the optimal filter structure is obtained. The multilayer comb line structure and the multi-layer rectangular ring structure are mainly used in the pre-selected filter. Several parameters of the filter are optimized by some innovative design, such as M-shaped comb resonator arrangement, improved packaging structure and staggered arrangement of multi-layer resonant rings. If filter is mainly composed of embedded LC circuit with lumped parameters. The design method of nested embedded elements is studied, and some structural innovations are made. In addition to the above design work, a set of PCB test fixture for LTCC filter is made. Finally, a pre-selected filter bank with a passband frequency range of 3.9GHz 4.8GHz and a 5.5~6.3GHz band of 5.8GHz and an intermediate frequency filter bank with a passband frequency range of 510~610MHz and DC~2GHz are realized. The test results show that the insertion loss and VSWR of these filters in the passband range can meet the design requirements. In general, these filters have good performance and obvious size advantage, except for the slight difference of suppression in the high end band of if low pass filters. The test results confirm the feasibility of the design and show that the design has certain engineering application value.
【学位授予单位】:电子科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TN713

【参考文献】

相关期刊论文 前10条

1 沈平;底海英;施朝著;彭艳君;贾宝富;;毫米波硅片集成MEMS滤波器[J];微波学报;2016年S1期

2 陈军;朱晓维;居万晨;;X波段微带交叉耦合带通滤波器的设计[J];微波学报;2014年02期

3 任水生;;基于频谱分析仪的动态增益分配技术[J];国外电子测量技术;2014年01期

4 刘冬冬;;矢量网络分析仪校准项目探讨[J];计量与测试技术;2011年03期

5 姬臻杰;王海珍;冯哲;吕琴红;;LTCC工艺自动切片技术[J];电子工艺技术;2011年01期

6 杨洁;杨育;;无线电频谱资源管理研究现状分析[J];无线电工程;2008年09期

7 杨邦朝;付贤民;胡永达;;低温共烧陶瓷(LTCC)技术新进展[J];电子元件与材料;2008年06期

8 边国辉;方一波;吴小帅;;用于制造微波多芯片组件的LTCC技术[J];半导体技术;2008年05期

9 王睿;王悦辉;周济;杜波;;低温共烧陶瓷技术及其应用[J];硅酸盐学报;2007年S1期

10 朱海奎;刘敏;周洪庆;;LTCC介质材料的研究进展[J];材料导报;2006年S1期

相关会议论文 前1条

1 王瑞庭;;LTCC技术的发展和应用[A];第十四届全国混合集成电路学术会议论文集[C];2005年

相关博士学位论文 前1条

1 钱可伟;基于LTCC技术的无源器件研究[D];电子科技大学;2012年

相关硕士学位论文 前3条

1 夏新运;微波实时频谱分析仪射频前端设计[D];电子科技大学;2015年

2 邱康康;小型化频谱监测设备前端组件的设计与实现[D];电子科技大学;2014年

3 靳应祥;一种组合型开关滤波器组的设计与实现[D];电子科技大学;2014年



本文编号:1931963

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dianzigongchenglunwen/1931963.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户41368***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com