当前位置:主页 > 科技论文 > 电子信息论文 >

含柔性链的双极传输主体材料的设计、合成及表征

发布时间:2018-06-08 15:32

  本文选题:磷光 + 双极主体 ; 参考:《陕西师范大学》2015年硕士论文


【摘要】:集结了液晶和无机LED(Light-Emitting Diodes)优势的有机电致发光器件(Organic Light-Emitting Diodes,OLEDs),被人们普遍认为是新世纪最具潜力的显示照明技术。有机电致发光器件的未来研究重心是从荧光电致发光转向磷光电致发光因其有着实现100%的内部量子效率的可能性。跟荧光电致发光材料相比,磷光材料的三线态激子寿命较长,极易引发三线态-三线态湮灭及三线态-极化子淬灭而影响器件的效率,因此,磷光器件需采用主客体结构才能在将来的平板显示和固态照明行业开拓更加广阔的天地。双极传输主体材料是磷光OLEDs(PHOLEDs)最有潜力的主体材料之一。本论文通过引入柔性间隔基团,削弱分子给受体间的π-共轭效应以增加材料三线态能级和分子成膜稳定性,分别选用嗯二唑和均三嗪为电子传输单元,三苯胺和咔唑为空穴传输单元设计合成一系列新型双极传输主体材料,并通过结构鉴定、光物理分析以及各种手段来研究这类主体材料的各类性质。各章的主要内容如下:第一章是文献综述。首先简要介绍了有机电致发光的相关基础知识,包括发展史、发光机理、基本器件结构、各功能层的相关材料等。然后从载流子传输的角度综述了近几年来几类主体材料研究进展。其中,重点介绍了当前通过新型连接方式设计合成的一些综合性能优良的双极主体材料的思路、方法、主要成果和存在的问题,最后,阐述了本论文的总体设计思想。第二章通过Suzuki反应等合成了两种具有鲜明对比结构的双极主体化合物2-(4-(3,5-双(9-咔唑基)苯基)苯基)-4,6-二苯基-1,3,5-三嗪(mCP-TRZ)和2-(4-(3-(3,5-双(9-咔唑基)苯基)丙基)苯基)-4,6--苯基-1,3,5-三嗪(mCP-L-TRZ)。它们的玻璃化温度分别为160.65℃和103.26-C,在热稳定性上较之单纯的mCP和TRZ大有提升;它们的三线态能级分别为2.6 eV和2.9 eV,显然mCP-L-TRZ更适合用于蓝色磷光主体,说明mCP-L-TRZ采用的新型连接方式削弱了给受体间的电荷转移而保持了其较高的三线态能级。这一系列实验结果支持了本文的分子结构设计能同时提高主体材料的传能性质和发光膜的稳定性的预期设想。第三章通过邻、对位的连接方式,将空穴传输的三苯胺单元和电子传输的嗯二唑单元连接起来,合成了两种主体化合物,并通过核磁氢谱等对它们的结构进行鉴定。对两化合物进行紫外-可见吸收光谱,荧光发射光谱研究,两化合物吸收峰的对比初步验证了邻位连接能降低分子内电荷转移的设想。第四章为全文总结和展望,总结了论文的主要实验结论,并在本论文工作的基础上对有机电致磷光主体材料的研究进行了展望。
[Abstract]:Organic Light-Emitting Diodes, which have the advantages of liquid crystal and inorganic LEDX Light-Emitting Diodes, are widely regarded as the most promising display lighting technology in the new century. The focus of future research on organic electroluminescent devices is from fluorescent electroluminescence to phosphorescent electroluminescence because of its possibility of achieving 100% internal quantum efficiency. Compared with the fluorescent electroluminescent material, the phosphorescent material has a longer lifetime of the three-wire exciton, which can easily lead to the three-wire state annihilation and the three-line state polaron quenching, which affects the efficiency of the device. Phosphorescence devices need to adopt host and guest structure in order to expand the future flat panel display and solid state lighting industry. Bipolar transport host material is one of the most promising host materials for phosphorescence OLEDsPHOLEDs. In this paper, by introducing flexible spacer groups, the 蟺 -conjugation effect between the receptors is weakened to increase the energy level of the three-wire state and the stability of the molecular film formation, using hmdiazole and m-triazine as the electron transport units, respectively. A series of novel bipolar transport host materials were designed and synthesized by trianiline and carbazole as hole transport units, and their properties were studied by means of structural identification, photophysical analysis and various means. The main contents of each chapter are as follows: the first chapter is a literature review. Firstly, the basic knowledge of organic electroluminescence is briefly introduced, including the history of development, the mechanism of luminescence, the structure of basic devices, the related materials of each functional layer, etc. Then, the research progress of several kinds of main materials in recent years is reviewed from the point of view of carrier transport. Among them, the ideas, methods, main achievements and existing problems of some bipolar materials with excellent comprehensive performance are introduced in detail. Finally, the overall design idea of this paper is expounded. In chapter 2, two novel bipolar compounds with distinct contrasting structures, 2-CP-CP-TRZ) and 2-PH-4CP-TRZ) were synthesized by means of Suzuki reaction, respectively. Two novel bipolar compounds with distinct structures were synthesized, namely, 2-diphenyl-4-pyrrolidene, 6-diphenyl, 6-diphenyl, 3-triazine-3-triazinone, 3-triazolyl) propyl) -4N, 6-diphenyl, 1-triazine-5-triazinone, mCP-L-TRZ. Their glass transition temperatures are 160.65 鈩,

本文编号:1996285

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dianzigongchenglunwen/1996285.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户52d5e***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com