高压大功率GaN器件开关过程振荡问题分析及应用设计研究
本文选题:高压大功率GaN晶体管 + 开关特性 ; 参考:《北京交通大学》2017年硕士论文
【摘要】:基于氮化镓(GaN)材料的新型半导体功率器件由于其高电子迁移率、高饱和漂移速度、高临界击穿电场等优异的电气特性,在高压、高频和大功率场合具有巨大的潜力,受到人们的广泛关注。但是由于GaN器件本身的导通电阻(Rds_on)较小,以及基于GaN器件的布局设计要求的高频环路面积较小,导致总体高频环路阻尼较小,且高压大功率GaN器件自身开关速度极快,开通电流变化率可达3000A/us,因此易出现电压电流的振荡现象,尤其是在桥式结构当中,令GaN器件在高频中的应用受到限制。因此,本文针对高压大功率GaN功率器件在桥式结构中的振荡现象展开以下研究工作:首先在介绍GaN器件研究背景和国内外的器件研究现状的基础上,总结了高压大功率GaN器件的器件特性研究现状和振荡研究现状;其次在精确测试平台基础上,对Cascode型和E-mode型两款同等级的高压大功率GaN功率器件进行测试,分析其开关性能,给出两者的开通与关断损耗的数学模型,并利用测试结果对Cascode型和E-mode型两款同等级GaN器件进行对比;针对高压大功率GaN器件在测试过程中表现出的振荡现象,本文结合开关特性测试结果,首先分析了 E-mode型GaN器件和Cascode型GaN器件的开关过程,并基于该开关过程,对高压大功率GaN器件的振荡现象进行分析,给出了基于寄生参数的外部误导通和基于Cascode结构的内部误导通两种振荡诱因,并给出了振荡现象发生后,GaN器件所呈现的3种状态;基于两种振荡诱因,本文分别给出振荡的抑制方案,并通过仿真和部分实验进行了验证。最后本文结合开关特性测试结果和振荡抑制方案,分别搭建了双脉冲测试平台和Boost实验平台和双Buck逆变器实验平台,对高压大功率GaN器件进行应用设计。实验结果分别验证了其在桥式结构中的振荡诱因及振荡抑制方案的有效性;验证了高频环路优化对GaN器件应用的重要性;最后利用双脉冲测试平台,针对高压大功率GaN器件进行了驱动设计优化。
[Abstract]:Novel semiconductor power devices based on gallium nitride (gan) have great potential in high voltage, high frequency and high power applications due to their excellent electrical properties such as high electron mobility, high saturation drift velocity and high critical breakdown electric field. Get people's wide attention. However, due to the smaller on-resistance of gan devices and the smaller area of high-frequency loops required by the layout design of GaN-based devices, the damping of the overall high-frequency loops is lower, and the switching speed of high-voltage and high-power gan devices is extremely fast. The change rate of on-off current can reach 3000A / s, so the oscillation of voltage and current is easy to occur, especially in bridge structure, which limits the application of gan devices in high frequency. Therefore, in this paper, the oscillation of high-voltage and high-power gan devices in bridge structure is studied as follows: firstly, based on the introduction of the research background of gan devices and the current research situation of GaN devices at home and abroad, The characteristics and oscillations of high-voltage and high-power gan devices are summarized. Secondly, on the basis of accurate test platform, two kinds of high-voltage and high-power gan power devices of the same class Cascode and E-mode are tested, and their switching performance is analyzed. The mathematical model of switching on and off loss is given, and the Cascode type and E-mode type gan devices of the same class are compared with the test results, and the oscillatory phenomena of high voltage and high power gan devices during the testing process are analyzed. In this paper, the switching process of E-mode gan device and Cascode type gan device is analyzed, and the oscillation phenomenon of high-voltage and high-power gan device is analyzed based on the switching process. Two inducements of external misdirection based on parasitic parameters and internal misdirection based on Cascode structure are given, and the three states of gan devices after oscillation are given. In this paper, the suppression scheme of oscillation is given, and it is verified by simulation and some experiments. Finally, combined with the test results of switching characteristics and the scheme of oscillation suppression, the dual pulse test platform, boost experimental platform and double Buck inverter experimental platform are built, respectively, and the application design of high voltage and high power gan devices is carried out. The experimental results verify the oscillation inducement and the effectiveness of the oscillation suppression scheme in the bridge structure, and verify the importance of the high-frequency loop optimization in the application of gan devices. Finally, the dual-pulse test platform is used. The drive design of high voltage and high power gan devices is optimized.
【学位授予单位】:北京交通大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TN386
【参考文献】
相关期刊论文 前8条
1 秦海鸿;董耀文;张英;徐华娟;付大丰;严仰光;;GaN功率器件及其应用现状与发展[J];上海电机学院学报;2016年04期
2 赵正平;;GaN高频开关电力电子学的新进展[J];半导体技术;2016年01期
3 郑畅;;氮化镓元件将扩展功率应用市场[J];半导体信息;2015年05期
4 科信;;EPC发布小型高效增强型GaN场效应晶体管[J];半导体信息;2015年05期
5 赵海发;杨锋英;;Si基GaN功率器件的发展态势[J];电子元件与材料;2014年07期
6 吴琪乐;;宜普公司认为GaN器件开始侵食硅功率MOSFET市场[J];半导体信息;2012年06期
7 贾利芳;樊中朝;颜伟;杨富华;;GaN基HFET电力电子器件的研究[J];微纳电子技术;2012年11期
8 张波;陈万军;邓小川;汪志刚;李肇基;;氮化镓功率半导体器件技术[J];固体电子学研究与进展;2010年01期
相关硕士学位论文 前4条
1 黄波;Cascode GaN晶体管与GaN二极管应用研究[D];北京交通大学;2016年
2 崔梅婷;GaN器件的特性及应用研究[D];北京交通大学;2015年
3 孙彤;氮化镓功率晶体管应用技术研究[D];南京航空航天大学;2015年
4 陈冲;AlGaN/GaN HEMT场板结构与击穿特性和栅漏电研究[D];西安电子科技大学;2014年
,本文编号:2009178
本文链接:https://www.wllwen.com/kejilunwen/dianzigongchenglunwen/2009178.html