超宽带低噪声放大器设计与研究
发布时间:2018-06-17 16:33
本文选题:超宽带 + 自偏置 ; 参考:《电子科技大学》2017年硕士论文
【摘要】:随着信息化时代的到来,人们对通信的需求越来越高,为了提高通信效率、降低通信成本、加强通信安全性,超宽带技术(Ultra WideBand,UWB)应运而生。而超宽带低噪声放大器作为无线接收机前端的重要模块,其性能直接影响着超宽带接受机的整体性能。本文的研究对象为超宽带低噪声放大器。在系统分析了近年来全球的超宽带低噪声放大器研究状况后,对超宽带低噪声放大器的实现原理进行了分析,并将目前主流的几种超宽带低噪声放大器拓扑结构进行了详细的分析以及对比,总结其优点以及缺点。然后,在现有结构的基础上,提出一种新型的全对称自偏置低功耗的超宽带低噪声放大器电路,并进行设计仿真得到结果以及版图。最后,在前文设计的基础上,又提出了一种结合人工神经网络工作特点,对超宽带低噪声放大器进行进一步优化的设计。本次设计,主要结合了近年来超宽带低噪声放大器的主流设计架构,通过将可以实现带宽展宽的自偏置电阻负反馈匹配电路和用以实现良好阻抗匹配电感源极负反馈电路结合得到了电路的第一级结构即输入匹配级电路,在获得足够增益带宽的同时也满足了输入阻抗的匹配条件;而为了使低噪声放大器得到足够的增益尤其是高频增益,又进一步设计了第二级高频增益放大电路来使得总体电路的增益满足条件,并利用电感串联峰化技术将两级电路级联在一起以保证获得足够的工作带宽。论文的第三章最后给出了本次超宽带低噪声放大器的仿真结果,其工作带宽为1GHz-10.6GHz,在此工作带宽内,电路增益为15.6-18dB,噪声系数NF为2.4dB-3.9dB,并实现了不错的输入阻抗匹配(S11-10dB),而整个电路的功耗也较低,电路的总功耗仅仅为9.75mW。同目前的同类研究对比,该电路的带宽、增益、噪声都有着一定的优势。为了进一步提高超宽带低噪声放大器的性能,本文第四章提出了一种利用人工神经网络的记忆能力以及学习能力来对超宽带低噪声放大器性能进行优化的方法,并给出了实际案例。
[Abstract]:With the arrival of the information age, the demand for communication becomes higher and higher. In order to improve communication efficiency, reduce communication cost and enhance communication security, Ultra wide Band (UWB) technology emerges as the times require. As an important module of wireless receiver, UWB LNA has a direct impact on the overall performance of UWB receiver. The research object of this paper is UWB LNA. After systematically analyzing the research status of UWB LNA in recent years, the realization principle of UWB LNA is analyzed. The main topology of UWB LNA is analyzed and compared in detail, and its advantages and disadvantages are summarized. Then, based on the existing structure, a novel full-symmetric self-biased low-power UWB low-noise amplifier circuit is proposed, and the simulation results and layout are obtained. Finally, on the basis of the previous design, a further optimization design of UWB LNA is proposed, which combines the characteristics of artificial neural network (Ann). This design mainly combines the mainstream design architecture of UWB LNA in recent years. By combining the self-bias resistor negative feedback matching circuit which can realize the bandwidth broadening and the good impedance matching inductance source negative feedback circuit, the first stage structure of the circuit, namely the input matching stage circuit, is obtained. In order to obtain sufficient gain bandwidth and satisfy the matching condition of input impedance, in order to obtain sufficient gain, especially high frequency gain, Furthermore, the second stage high frequency gain amplifier circuit is designed to satisfy the gain condition of the whole circuit, and the two stage circuits are cascaded together by the inductance series peaking technique to ensure the sufficient working bandwidth. In the third chapter, the simulation results of the UWB LNA are given. The bandwidth of the UWB LNA is 1 GHz ~ 10.6 GHz. The gain of the circuit is 15.6-18dB, the noise coefficient NF is 2.4dB-3.9dB, and a good input impedance matching S11-10dBN is realized. The power consumption of the whole circuit is also low, and the total power consumption of the circuit is only 9.75mW. Compared with the current research, this circuit has some advantages in bandwidth, gain and noise. In order to further improve the performance of UWB LNA, the fourth chapter of this paper proposes a method to optimize the performance of UWB LNA by using the memory ability and learning ability of artificial neural network. A practical case is given.
【学位授予单位】:电子科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TN722.3
【参考文献】
相关期刊论文 前8条
1 解放;罗闯;;CMOS模拟集成电路版图设计[J];微处理机;2012年03期
2 赵萌;李雪;韩波;高建军;;高速跨阻放大器设计综述[J];电子器件;2009年03期
3 姚芳;李秋利;;浅谈CMOS模拟集成电路版图设计的器件匹配方法[J];集成电路通讯;2008年04期
4 吴岳婷;张润曦;沈怿皓;陈元盈;周灏;赖宗声;;433MHz ASK接收机射频前端版图设计[J];微电子学;2007年06期
5 刘抒民;田立卿;;使用负反馈技术设计宽带低噪声放大器[J];遥测遥控;2007年03期
6 金善子;;模拟电路版图设计中的匹配艺术[J];中国集成电路;2006年12期
7 朱大奇;人工神经网络研究现状及其展望[J];江南大学学报;2004年01期
8 陈国良,韩文廷;人工神经网络理论研究进展[J];电子学报;1996年02期
相关硕士学位论文 前4条
1 万力涛;超宽带低噪声放大器的设计[D];北京交通大学;2013年
2 高艳花;0.18um CMOS工艺低噪声放大器的电路及版图设计[D];复旦大学;2011年
3 刘白梅;2.4GHz低功耗无线接收机中低噪声放大器与混频器研究[D];湖南大学;2010年
4 关赫;适用于无线局域网的CMOS低噪声放大器设计[D];西安电子科技大学;2009年
,本文编号:2031682
本文链接:https://www.wllwen.com/kejilunwen/dianzigongchenglunwen/2031682.html