基于新型中间连接层的叠层白光有机电致发光器件的研究
发布时间:2018-06-17 23:08
本文选题:OLED + 叠层 ; 参考:《吉林大学》2015年硕士论文
【摘要】:有机电致发光器件(Organic Light-Emitting Device,简称OLED),在科技快速发展的今天,一直不断地在进步,尤其在新一代平板显示技术和固态照明两大领域崭露头角,并日趋完善和稳定。叠层白光有机电致发光器件(Tandem WhiteTandem Organic Light-Emitting Device,简称Tandem WOLED)将两个或两个以上单独的有机电致发光单元,依照互补色原则,通过中间连接层串联在一起组成发白光的器件。叠层器件具有亮度高、低功耗、寿命长、色坐标稳定等优点,对未来白光照明有很大的应用前景。 叠层OLED的中间连接层(或电荷生成层)不仅具有连接各个发光单元的作用,还负责电荷的生成、传输以及载流子注入到各发光单元。可见,中间连接层对叠层OLED至关重要。因此,中间连接层的设计与优化也成为了对叠层OLED研究工作的重要部分。 本论文根据以上思路,基于新型中间连接层的叠层白光有机电致发光器件展开研究,目的是为了设计出新型的中间连接层,不仅能够保证叠层器件的高性能,而且能够使叠层器件的整体结构和中间连接层的结构都得到优化。具体开展了以下工作: 首先,采用真空热蒸镀方法制备了单色OLED。制备了三组器件,第一组对不同电子传输层的黄光OLED进行比较,发现电子传输层中含有Bphen的器件表现出明显高的电流密度和更高的效率,得出结论:当金属Ag分别沉积到三种电子传输层Bphen、TmPyPB和TpPyPB上时,Ag会分别扩散到这三种有机材料中,但是Ag只与Bphen发生反应并生产新物质,提高了电子从Ag向Bphen中的注入,降低开启电压,从而提高器件效率,而Ag不会与TmPyPB和TpPyPB发生任何反应。也就是说,对电子传输层Bphen来说Ag才有效。 第二组是以Ag为阴极、Bphen为电子传输层的绿光OLED,Bphen的厚度不同,金属Ag与发光层Alq3之间嵌入的Bphen能够明显提高阴极电子的注入,使器件电流密度随电压升高而增大,但是如果Bphen太薄,器件在低电压下会出现负阻效应,只有当Bphen厚度达到5nm时,,负阻效应才会消失。得出结论:金属Ag沉积到电子传输层Bphen的扩散长度约为5nm。 第三组以Ag和Mg:Ag分别为阴极的黄光OLED,证明了以Ag为阴极的OLED可与以Mg: Ag合金为阴极的OLED性能媲美,金属Ag作为阴极材料,有效的提高了电子的注入,而且阴极Ag不需要任何修饰层,如LiF、碱金属及其化合物、V2O5等,同时Ag结构简单,易于操作。因此,我们得出结论:Ag是一种很好的阴极材料。 接下来,在以Ag为阴极的单色OLED的基础上,设计将金属Ag同时作为阴极和中间连接层应用到Tandem WOLED,同没有Ag作为中间连接层的叠层器件相比,Ag促进了电子注入,明显提高了器件电流密度,说明Ag是一种性能良好的中间连接层材料;再比较不同的电子传输层,对应薄层金属Ag作为中间连接层, Bphen较其它材料有更大的优势;从Tandem WOLED自身结构的特征出发,验证上下发光层的顺序,蓝光发光单元靠近ITO阳极、黄光发光单元靠近阴极Ag,发出的白光性能最稳定;对器件的电子传输层Bphen的厚度加以优化,当厚度增大时,电流密度和亮度变化不大,但是效率有明显提高,使优化后的Tandem具有开启电压低、功率效率低、功率效率高、色坐标稳定、且结构简化的优势,充分利用了金属Ag与有机材料Bphen的特殊性质。 最后,基于前面的研究结论,由于Ag的功函数的限制,尽管是以Bphen为电子传输层,其电子注入仍然会受到一定的限制,并且也限制了电子传输层的选择范围,因而我们将常用于OLED阴极的Mg:Ag合金作为叠层器件的内部连接层,研究Mg:Ag合金的比例、及其不同的电子传输层等对叠层WOLED性能的影响。不同浓度比的Mg:Ag与Ag进行比较,因为Mg的功函数较低,掺入功函数较高的Ag,合金同样适合作为叠层器件的中间连接层,甚至有优于Ag的表现;以Mg:Ag为中间连接层的Tandem WOLED,可以在除了Bphen以外的电子传输层中发挥作用,提高器件效率。 综上所述,本论文设计并不断优化了Tandem WOLED的中间连接层,将金属Ag和合金Mg:Ag应用为中间连接层,既简化了器件结构,又保证了器件的优良性能,Tandem WOLED表现为低驱动电压、高功率效率和低效率滚降。
[Abstract]:Organic Light - Emitting Device ( OLED ) has been making progress in the rapid development of science and technology , especially in the new generation of flat panel display technology and solid state lighting .
the intermediate connection layer ( or charge generation layer ) of the laminated oled has not only the function of connecting the individual light - emitting units but also the generation , transmission and carrier injection of charge into the light - emitting units .
In order to design a novel middle connecting layer , we can not only guarantee the high performance of the laminated device , but also optimize the whole structure of the laminated device and the structure of the middle connecting layer . The following work is carried out :
The results show that when the metal Ag is deposited on the three electron transport layers Bphen , TmPyPB and TpPyPB , the Ag can diffuse into the three kinds of organic materials , but Ag only reacts with Bphen and produces new substances , which improves the efficiency of the device , and Ag does not react with TmPyPB and TpPyPB . In other words , Ag is only effective for the electron transport layer Bphen .
The second group is the green OLED with Ag as the cathode and Bphen as the electron transport layer . Bphen embedded in the metal Ag and the light - emitting layer Alq3 can obviously improve the electron injection of the cathode , so that the current density of the device increases with the increase of the voltage , but if the Bphen is too thin , the negative resistance effect appears only when the thickness of the Bphen is 5 nm . The conclusion is that the diffusion length of the metal Ag to the electron transport layer Bphen is about 5 nm .
In the third group , Ag and Mg : Ag , respectively , are yellow light OLEDs , which show that the OLED with Ag as cathode is comparable with OLED with Mg : Ag alloy as cathode . As cathode material , Ag can effectively improve electron injection , and Ag does not need any modification layer , such as LiF , alkali metal and its compound , V2O5 , etc . , Ag has simple structure and easy operation . Therefore , it is concluded that Ag is a good cathode material .
Next , on the basis of a single - color OLED using Ag as the cathode , the metal Ag is designed to be applied as a cathode and an intermediate connecting layer to Tandem WOLEDs , and the Ag promotes electron injection compared with a laminated device without Ag as an intermediate connection layer , so that the current density of the device is obviously improved , and the Ag is a middle connecting layer material with good performance ;
Compared with other materials , Bphen has more advantages than other materials by comparing different electron transport layers , and the corresponding thin layer metal Ag is used as the intermediate connecting layer ;
According to the characteristics of the tandem WOLED self structure , the sequence of the upper and lower light emitting layers is verified , the blue light emitting unit is close to the ITO anode , the yellow light emitting unit is close to the cathode Ag , and the white light performance is most stable ;
the thickness of the electron transport layer Bphen of the device is optimized , when the thickness is increased , the current density and the brightness change are not large , but the efficiency is obviously improved , so that the optimized Tandem has the advantages of low opening voltage , low power efficiency , high power efficiency , stable color coordinates and simplified structure , and the special property of the metal Ag and the organic material Bphen is fully utilized .
At last , based on the previous research conclusions , because of the limitation of the work function of Ag , the electron injection is still limited by the Bphen as the electron transport layer , and the choice range of the electron transport layer is also limited . The Mg : Ag alloy used in the cathode of the OLED is used as the internal connection layer of the laminated device .
Tandem WOLEDs with Mg : Ag as the intermediate connection layer can play a role in the electron transport layer other than Bphen , and improve the device efficiency .
In conclusion , the paper designs and continuously optimizes the middle connecting layer of Tandem WOLED , and applies the metal Ag and the alloy Mg : Ag as the intermediate connecting layer , which not only simplifies the structure of the device , but also ensures the excellent performance of the device , and the Tandem WOLED shows low driving voltage , high power efficiency and low efficiency roll - down .
【学位授予单位】:吉林大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TN383.1
【共引文献】
相关博士学位论文 前5条
1 邓艳红;电荷产生层对叠层有机发光器件性能影响的研究[D];苏州大学;2014年
2 魏怀鑫;有机光电器件的界面特性研究[D];苏州大学;2014年
3 冯雪飞;金属/有机界面结构及其与有机电子和光电器件性能间关系的研究[D];中国科学技术大学;2014年
4 彭丽萍;异价掺杂TiO_2的电子结构和光学及热电性能研究[D];华中科技大学;2014年
5 张志坤;石墨衬底半导体ZnO和SiC材料生长研究[D];大连理工大学;2014年
相关硕士学位论文 前5条
1 张钰磊;OLED驱动电路的研究与设计[D];兰州交通大学;2013年
2 刘明伟;CoPc在Au(111)表面吸附的结构和电子态研究[D];浙江大学;2013年
3 王琦;基于新型铱配合物的有机电致发光器件及其特性研究[D];电子科技大学;2013年
4 毕文涛;利用载流子产生层提高串联式有机电致发光器件性能的研究[D];天津理工大学;2013年
5 肖志慧;采用串联式结构提高有机电致发光器件性能的研究[D];天津理工大学;2014年
本文编号:2032855
本文链接:https://www.wllwen.com/kejilunwen/dianzigongchenglunwen/2032855.html