纳米工艺下基于加固设计的抗辐射电路研究
本文选题:单粒子效应 + 软错误 ; 参考:《合肥工业大学》2015年硕士论文
【摘要】:随着集成电路工艺水平的不断提高,CMOS晶体管工艺尺寸的不断缩小,以及工作电压不断降低,使得电路节点电容随之减少,导致CMOS电路越发容易受到辐射效应引起的软错误的影响。单粒子效应分为两类,一类是发生在时序单元中的单粒子翻转(SEU),另一类是发生在组合逻辑电路中的单粒子瞬态(SET)。当粒子轰击组合逻辑的敏感节点,会出现瞬态故障脉冲,该脉冲被称为单粒子瞬态(SET)脉冲。当粒子轰击到存储单元的内部节点,会产生沉积电荷,当达到临界电荷时,会导致存储值发生翻转,该情况被称为单粒子翻转(SEU)。SET脉冲可能会沿着数据路径传播并被下游的时序单元所捕捉,发生软错误。但是由于组合逻辑单元的逻辑屏蔽效应、电气屏蔽效应和时序存储单元的时窗屏蔽效应的影响,SET故障脉冲可能会被屏蔽。另一方面,近期的实验数据表明,容SEU技术已经成为纳米工艺下抗辐射加固锁存器设计的一个重要问题。对于高密度的存储器件,通常采用低成本的纠错码技术进行防护。因此,在一般的应用中,存储单元已不是防护的重点。加固技术研究主要集中在锁存器和触发器的领域。基于上述情况,本论文主要研究工作如下:(1)学习研究了由空间辐射引起的单粒子效应,探讨其产生环境,作用机理,以及对集成电路的影响效果等方面。并对现有的解决单粒子效应的方法进行了分析和归类,比较了它们各自的优缺点。(2)在纳米工艺水平下,提出一种适用于低功耗电路的高速抗辐射加固锁存器(SRHL)结构,针对锁存器更容易受到高能粒子轰击产生软错误的情形,本文采用由12个晶体管构成的反馈冗余矩阵及一个保护门C单元结构,其中反馈冗余矩阵的每个晶体管或节点的状态均由其相邻晶体管或节点决定。SRHL锁存器的内部节点和输出节点在受到高能粒子轰击产生瞬态故障后均具有快速自恢复能力,不会影响锁存器正常工作。相比其他的锁存器加固方案,我们提出的锁存器在延迟,功耗等方面有着性能优势并且在应用范围上更加广泛。针对45nm工艺,使用SPICE仿真工具进行仿真的实验结果表明,SRHL锁存器比以往的软错误加固锁存器有着面积,延迟,功耗上的优势。
[Abstract]:With the continuous improvement of integrated circuit technology level, the process size of CMOS transistor is shrinking and the working voltage is decreasing, which makes the capacitance of circuit node decrease. CMOS circuits are more vulnerable to soft errors caused by radiation effects. Single particle effect can be divided into two categories, one is single particle transition (SEU) which occurs in sequential unit, and the other is single particle transient (set) in combinational logic circuits. When particles bombard sensitive nodes of combinational logic, transient fault pulses occur, which are called single particle transient (set) pulses. When the particle bombardes the internal node of the memory cell, it generates a deposited charge, and when the critical charge is reached, it causes the storage value to flip. This situation is called single particle flip (SEU). Set pulse may propagate along the data path and be captured by the downstream time series unit, resulting in soft errors. But due to the logic shielding effect of combinational logic unit, the effect of electrical shielding effect and time window shielding effect of sequential memory cell, the set fault pulse may be shielded. On the other hand, recent experimental data show that the capacitive SEU technology has become an important issue in the design of anti-radiation reinforcement latch in nanotechnology. For high density memory devices, low-cost error-correcting codes are usually used to protect them. Therefore, in general applications, memory cells are no longer the focus of protection. The research of reinforcement technology is mainly concentrated in the field of latch and flip-flop. Based on the above, the main work of this thesis is as follows: (1) the single particle effect caused by space radiation is studied, and the environment, the mechanism and the effect on the integrated circuit are discussed. The existing methods to solve the single particle effect are analyzed and classified, and their respective advantages and disadvantages are compared. (2) at the level of nanotechnology, a high speed radiation resistant strengthened latch (SRHL) structure for low power circuits is proposed. In this paper, a feedback redundancy matrix composed of 12 transistors and a guard gate C cell structure are used to solve the problem that latch is more vulnerable to soft errors caused by high energy particle bombardment. The state of each transistor or node of the feedback redundancy matrix is determined by its adjacent transistors or nodes. The internal nodes and output nodes of the SRHL latch have the ability of fast self-recovery after being bombarded by high-energy particles to produce transient faults. Does not affect the latch to work properly. Compared with other latch reinforcement schemes, the proposed latch has many advantages in delay and power consumption, and has a wider range of applications. For the 45nm process, the simulation results using spice simulation tool show that the latch has the advantages of area, delay and power consumption compared with the previous soft error strengthened latch.
【学位授予单位】:合肥工业大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TN402
【相似文献】
相关期刊论文 前10条
1 ;联电宣称其90纳米工艺超过台积电[J];集成电路应用;2004年07期
2 ;193纳米光刻将延至22纳米工艺![J];集成电路应用;2004年12期
3 ;纳米工艺竞赛起跑[J];电子测试;2005年02期
4 ;瞄准40纳米工艺,微捷码获得台积电参考流程认证[J];中国集成电路;2008年07期
5 ;中芯:已进口65纳米设备明年量产[J];集成电路应用;2005年10期
6 ;90纳米工艺造奔4[J];每周电脑报;2004年03期
7 ;AMD开卖65纳米芯片[J];每周电脑报;2006年46期
8 ;三星开始采用70纳米工艺生产4Gb闪存[J];集成电路应用;2005年07期
9 郑冬冬;;英特尔美国12英寸厂投产采用最先进45纳米工艺[J];半导体信息;2013年01期
10 ;五巨头联手开发亚45纳米工艺[J];微电子学与计算机;2003年11期
相关重要报纸文章 前10条
1 ;65纳米工艺明年初量产[N];人民邮电;2005年
2 赵凯期/DigiTimes;联电转移重心 加速试产65纳米工艺[N];电子资讯时报;2006年
3 赵凯期/DigiTimes;台积电今年纳米工艺业绩猛增[N];电子资讯时报;2006年
4 宋丁仪 DigiTimes;台积电45纳米工艺进度力拼全球前三[N];电子资讯时报;2006年
5 宋丁仪 DigiTimes;联电80纳米工艺紧追台积电[N];电子资讯时报;2006年
6 宋丁仪 DigiTimes;胡国强驳斥65纳米工艺转换不顺说法[N];电子资讯时报;2006年
7 梁燕蕙 DigiTimes;瑞萨将以65纳米工艺量产手机用系统芯片[N];电子资讯时报;2007年
8 宋丁仪 DigiTimes;台积电55纳米工艺提前量产[N];电子资讯时报;2007年
9 宋丁仪 DigiTimes;联电90纳米工艺合格率劲扬[N];电子资讯时报;2007年
10 赵艳秋 编译;90纳米工艺并非制胜法宝[N];中国电子报;2002年
相关硕士学位论文 前2条
1 吴悠然;纳米工艺下基于加固设计的抗辐射电路研究[D];合肥工业大学;2015年
2 卢文娟;65纳米工艺下低功耗CAM的研究与设计[D];安徽大学;2014年
,本文编号:2054140
本文链接:https://www.wllwen.com/kejilunwen/dianzigongchenglunwen/2054140.html