当前位置:主页 > 科技论文 > 电子信息论文 >

Ka波段新型慢波系统理论与实验研究

发布时间:2018-07-07 15:23

  本文选题:超材料 + 脊加载曲折波导行波管 ; 参考:《电子科技大学》2017年硕士论文


【摘要】:曲折波导凭借其频带宽、易加工、功率容量大等特点,受到了广泛的关注,在国防安全,科学研究,卫星通信等方面具有广泛的应用。慢波系统作为行波管中注-波互作用的核心部件,其性能水平决定了整个行波管的水平。但是由于传统曲折波导慢波结构的耦合阻抗较低,限制了其输出功率的提升。为了提高曲折波导的输出功率、增益等参数,本文研究了一种Ka波段新型双脊加载曲折波导行波管,对它的色散特性和耦合阻抗特性进行了模拟,并用三维粒子模拟软件CST对这种新型行波管的注-波互作用过程进行了模拟分析,结果证明它的耦合阻抗比同频带的常规曲折波导高,同时电子效率和增益也更高。论文主要的工作如下:1.设计了 Ka波段新型双脊曲折波导慢波结构。描述了慢波结构的高频特性理论,利用HFSS高频仿真软件对慢波结构进行模拟,研究了各结构尺寸对其高频特性的影响,将优化后的仿真结果与常规曲折双脊波导慢波结构进行比较后发现,该慢波结构的耦合阻抗比常规曲折波导慢波结构的高。2.设计了行波管的输入输出结构和衰减器,利用HFSS高频仿真软件对该曲折双脊波导慢波结构的传输特性进行了仿真模拟,测得整管的电压驻波比小于1.3,并用CST粒子工作室对其注-波互作用进行了研究,得到该新型双脊加载曲折波导行波管在中心频率30GHz附近处有450W的输出功率,增益也达到40.7dB,在29~31GHz频段内输出功率达400W以上,电子效率大于10%。3.Ka波段新型双脊加载曲折波导的实验研究,用UG软件对输入输出结构、慢波线和衰减器进行了制图,并组装测试,实验测得的数据和软件模拟结果比较吻合。4.设计了一种加载了超材料的Ka波段新型双脊加载曲折波导慢波结构,用HFSS高频仿真软件对其高频特性进行了仿真模拟,并与常规曲折波导进行了对比,发现加载了超材料的Ka波段新型双脊加载曲折波导慢波结构的尺寸比未加入超材料的普通曲折波导大1.2倍,然后用ORION软件对新结构进行了互作用的模拟,仿真结果表明:整管增益大于37dB,输出功率大于410W,为后面的设计提供的可靠依据。
[Abstract]:The zigzag waveguide is widely used in national defense security, scientific research, satellite communication and so on, because of its characteristics such as frequency bandwidth, easy processing, large power capacity and so on. As the core component of beam-wave interaction in TWT, the performance level of slow wave system determines the level of TWT. However, because of the low coupling impedance of the traditional slow wave structure, the output power is limited. In order to improve the output power and gain of the zigzag waveguide, a novel Ka-band double-ridged waveguide traveling wave tube is studied in this paper, and its dispersion and coupling impedance characteristics are simulated. Three dimensional particle simulation software CST is used to simulate the beam-wave interaction process of the new TWT. The results show that the coupling impedance is higher than the conventional zigzag waveguide in the same frequency band, and the electron efficiency and gain are also higher. The main work of this paper is as follows: 1: 1. A new type of slow wave structure with double ridges and zigzag waveguides in Ka band is designed. This paper describes the theory of high frequency characteristic of slow wave structure, simulates the structure of slow wave by HFSS high frequency simulation software, and studies the influence of structure size on its high frequency characteristic. By comparing the optimized simulation results with the conventional twisting double-ridge waveguide slow wave structure, it is found that the coupling impedance of the slow wave structure is higher than that of the conventional zigzag waveguide slow wave structure. The input-output structure and attenuator of the TWT are designed. The propagation characteristics of the slow wave structure of the twisting double-ridge waveguide are simulated by HFSS high-frequency simulation software. The voltage standing wave ratio of the whole tube is less than 1.3. The beam-wave interaction is studied by CST particle studio. The output power of the new double-ridged waveguide traveling wave tube is 450 W at the center frequency of 30GHz. The gain is also up to 40.7 dB, the output power is more than 400W in the frequency band of 29g / 31GHz, and the electron efficiency is greater than 10.3.The experimental study of the new double-ridge loaded zigzag waveguide is carried out. The input and output structure, the slow wave line and the attenuator are plotted with UG software. And assembly test, the data measured by the experiment and software simulation results are in good agreement with. 4. A novel Ka-band double-ridge loaded slow wave waveguide with supermaterial is designed. The high frequency characteristics of the waveguide are simulated by HFSS software, and compared with the conventional zigzag waveguide. It is found that the size of a new Ka-band double-ridge loaded waveguide slow-wave structure is 1.2 times larger than that of the ordinary zigzag waveguide without supermaterial, and then the interaction of the new structure is simulated with ORION software. The simulation results show that the gain of the whole tube is greater than 37 dB and the output power is more than 410 W, which provides a reliable basis for the later design.
【学位授予单位】:电子科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TN124

【参考文献】

相关期刊论文 前6条

1 王娟;吴刚;杨明华;苏小刚;;大功率毫米波行波管发展现状[J];真空电子技术;2010年03期

2 冯进军;胡银富;蔡军;邬显平;唐烨;;W波段行波管发展评述[J];真空电子技术;2010年02期

3 丁耀根;;大功率微波电真空器件的发展动向[J];真空电子技术;2006年03期

4 邬显平;世纪之交的微波真空器件[J];真空电子技术;2003年01期

5 王文祥,宫玉彬,魏彦玉,余国芬,赵国庆;大功率行波管新型慢波线技术的进展[J];真空电子技术;2002年06期

6 刘顺康,周彩玉,包正强;折叠波导慢波电路的传输特性[J];真空电子技术;2002年04期

相关博士学位论文 前2条

1 何俊;毫米波新型曲折波导行波管的研究[D];电子科技大学;2010年

2 张辉;超常介质的电磁特性及其应用研究[D];国防科学技术大学;2009年



本文编号:2105382

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dianzigongchenglunwen/2105382.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户e3ad1***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com