具有倒装及堆叠技术的DrMOS封装工艺研究
[Abstract]:The power chip package package must properly solve the heat dissipation problem, and the stack package should be paid more attention, because the stack makes the heat dissipation area narrow, the heat accumulation phenomenon will be more obvious. There are many reports about this kind of problem. But the products of power device stacking package are not common. Therefore, how to design the structure in the existing technology system, Process reforming and key process improvement to solve the above problems is a subject that must be faced in the development of this kind of new product. This project is developed around a new type of power device module product QFN3.5x5 stacked package technology, which includes two MOSFET power devices core and a control circuit IC chip. It is a stacked package structure that forms a reasonable heat dissipation structure so as to maintain good thermal stability while reducing the volume significantly. The focus is to develop a stack package process, complete module package and key characteristic test. For this reason, the whole structure design of stacked package is established by demonstration, and then the simulation is carried out through Abaqus software. Then, the packaging structure is optimized. Then, in view of the optimized package structure, the package process flow design scheme is put forward to integrate the existing unit process, optimize the key single item technology, form the package package process, complete the module batch production and thermal stress characteristics test. The overall package architecture is the copper lead frame of the main body. A MOSFET power chip is mounted on both sides of the surface, then the control circuit IC chip is stacked above the upper tube core, and then the lead bonding is used to interconnect and seal. The copper sheet with the outstanding thermal conductivity is used as the main structure to better solve the heat export problem of the power chip. The whole process of the packaging process can be divided into two parts. Wafer level pre treatment process module and assembly bonding process module. The wafer level preprocessing technology includes the following main processes: wafer front chemical plating NiAu-- high lead tin balls - reflow soldering - Cleaning - epoxy resin sealing on the front of the wafer -- the front thin exposed lead tin electrode - the back of wafer surface thinning - Ti Ni Ag metal layer. Assembly bonding process The module flow is as follows: using high lead solder paste to bond the pipe chip - using high lead solder to bond tube chip and copper chip - Cleaning - stacked IC chip to copper chip - curing insulating adhesive - lead bonding - plastic seal - back cut, etc. On the basis of the art line, it focuses on the technology of high lead tin ball planting, the plastic sealing process of the epoxy resin in the front of the wafer, the bonding process of the high lead solder material in the pipe chip, the technology of the bonding copper sheet of the high lead solder material on the pipe chip, and the cleaning technology. A special screen is developed to meet the requirements of the product. The thinning of the circular crystal helps to heat the heat quickly, but the thinning operation is easily broken or other breakage, affecting the yield. The epoxy resin on the front of the wafer can be used as a support and can not be easily damaged under the thin chip of the chip. The process can be optimized by system optimization. The degree of industrial production also creates conditions for further thinning of chips in the future. The high lead solder paste chip designed the frame card slot to locate the copper sheet, prevent the copper sheet from rotated and improve the product's good product rate. The cleaning process has studied the influence of the popular cleaning water and cleaning parameters on the following lead bonding of the product, pointing out the optimized parameters and the model of the medicine water. This paper is based on this paper. In the study of the structure design and process, the optimization scheme is integrated into the whole process flow, and the manufacturing process of the new driving power device module is determined. The stability and repeatability of the single process are improved by optimizing the process parameters. Then a new type of power management device is made by the technology described above. The model module (DrMOS) model uses the specialized electronic thermal analysis finite element software Flothermal to study the temperature distribution of the typical design of the high density package DrMOS module on the PCB board, and puts forward some suggestions for the application design of the new DrMOS module. The force deformation is within the range of design expectation and application, and the power efficiency is greatly improved. This fully illustrates the new product completed by various advanced packaging technology. The performance is improved while the volume is significantly reduced, and the development is successful.
【学位授予单位】:上海交通大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TN405
【相似文献】
相关期刊论文 前10条
1 翁寿松;;几种新的封装工艺[J];电子与封装;2007年02期
2 张华洪;鄢胜虎;;电子封装工艺及过程管控体系[J];电子工业专用设备;2011年07期
3 姚秀华;刘笛;金元石;;黑瓷封装工艺研究[J];微处理机;2010年01期
4 钟传鹏;;大功率LED荧光胶封装工艺对其显色性能的影响[J];现代显示;2009年08期
5 钟传鹏;;大功率LED荧光胶封装工艺对其显色性能的影响[J];现代显示;2011年11期
6 钦永堂;;电子器件间互联与封装工艺技术分析[J];电子制作;2013年07期
7 Benjamin Jordan;;IC封装的过去与未来[J];中国电子商情(基础电子);2011年04期
8 Peland Koh;;高精度封装工艺的基板输送技术[J];电子工业专用设备;2007年03期
9 赵义坤;;无卤素工艺在封装工艺上的应用[J];科技传播;2010年24期
10 陈小兵;;电子器件间互联与封装工艺技术分析[J];科技传播;2013年10期
相关会议论文 前2条
1 余彬海;李绪峰;;大功率LED封装工艺技术新发展及对材料的要求[A];LED产业及其材料技术市场高层论坛论文集[C];2010年
2 高松信;武德勇;吕文强;;高功率激光二极管封装工艺的稳定性[A];中国工程物理研究院科技年报(2003)[C];2003年
相关重要报纸文章 前1条
1 长电科技股份有限公司技术总监 梁志忠;MIS封装工艺使金线消耗量降低三成[N];中国电子报;2010年
相关博士学位论文 前1条
1 关荣锋;MEMS器件设计、封装工艺及应用研究[D];华中科技大学;2005年
相关硕士学位论文 前9条
1 陈鑫;封装工艺中的铜线键合研究[D];上海交通大学;2014年
2 潘华;具有倒装及堆叠技术的DrMOS封装工艺研究[D];上海交通大学;2015年
3 高勖;Power QFN型开关芯片的封装工艺及其可靠性研究[D];天津大学;2010年
4 李长春;LED封装工艺设计及优化[D];华南理工大学;2011年
5 费春潮;低介电常数介质膜对器件封装工艺的影响和封装工艺的优化[D];复旦大学;2009年
6 何中伟;MCM-C实用先进组装封装工艺制造技术研究[D];南京理工大学;2006年
7 张雨秋;双列直插型低功耗智能功率模块封装工艺缺陷分析与改善[D];上海交通大学;2008年
8 赵霞焱;LED封装工艺结构对光色参量及散热系统的影响研究[D];西安电子科技大学;2013年
9 刘海;用于油墨固化的紫外LED光源封装技术研究[D];华中科技大学;2009年
,本文编号:2140496
本文链接:https://www.wllwen.com/kejilunwen/dianzigongchenglunwen/2140496.html