基于微波光子技术的微波信号参数测量
[Abstract]:In the field of radar applications and electronic warfare, the complex electromagnetic environment makes the radar receiver processing the signal more difficult. The measurement of the parameters of the microwave signal is a very important task in the modern defense system and the electronic information system. However, with the rapid development of the information technology and the escalation of the weapon and equipment, the microwave signal is covered. The frequency band is getting bigger and bigger. Because the traditional electronic technology is restricted by the electronic bottleneck, it is difficult to deal with the large bandwidth microwave signal. At this time, a new subject 00 microwave photonics is born. The microwave photonics is a new field combined with microwave and optics. The microwave photonics technique is due to its wide bandwidth, low loss and strong resistance to electromagnetic interference. In recent years, with the rapid development of the microwave photon technology, the microwave photon signal processing technology has also aroused the great interest of the researchers and gradually become the hot spot of research. This paper first discusses the research background of microwave photonic technology and the current research status at home and abroad. On this basis, the microwave photon signal processing technology is emphatically studied, and the electronic warfare receiver model based on the microwave photon link is established, and the characteristics and working principles of some key optical devices involved in the electronic warfare receiver are studied. Secondly, the bottleneck of the ultra wideband signal processing is restricted in the electric field, In particular, the optical compression sampling and frequency measurement technique combined with optoelectronic technology is proposed. One method is to use the spectrum of the ultra narrow pulse to sample the microwave signal with the energy balanced comb pulse, and then convert the original microwave signal down to a certain area far below the Nyquist sampling frequency; the other is based on the light time domain. The optical compression sampling system of tensile and compressed sensing can accurately measure the signal frequency domain. The system front-end optical time domain stretching system reduces the input high speed microwave signal effectively in the optical domain after the ultrashort Gauss optical pulse is transmitted through the single mode dispersion fiber, and slows the input of the high-speed microwave signal in the optical domain. The signal sampling bandwidth is sampled, and the back end uses compressed sensing technology to compress the decelerated signal in the electric field two times, thus greatly reducing the sampling frequency of the analog to digital converter, and then using the obtained under sampled data to reconstruct the frequency spectrum of the microwave signal through the compressed sensing reconstruction algorithm, and to measure the frequency of the signal accurately. The two methods are discussed in principle, simulation verification and result analysis to verify the feasibility of the system. Finally, a method of measuring the arrival time difference and the arrival angle of the key parameters of the microwave signal based on the microwave photon signal processing technology is proposed, and the direction of arrival is further estimated by measuring the phase difference of the received micro wave signal. On the basis of the improved system, a structural model of the integrated system of multi angle measurement and frequency measurement is proposed.
【学位授予单位】:西安电子科技大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TN015
【相似文献】
相关期刊论文 前10条
1 南利平 ,吕洪国;不要追求高档的微波信号源[J];国外电子测量技术;1999年03期
2 阮锦屏;一种改善和监视射频或微波信号相位噪声的新方法[J];电子学报;1990年05期
3 ;泰克确立宽带射频/微波信号发生能力新指标[J];国外电子测量技术;2011年02期
4 ;健康·新知[J];新闻周刊;2002年33期
5 映青;;LSA发射机[J];半导体情报;1972年01期
6 王沁泉;陈福深;;光学外差法产生微波信号特性的研究[J];半导体光电;2009年06期
7 ;WTX-3固体信号源的研制[J];电子测量技术;1977年03期
8 ;R&S SMF100A为微波信号源树立了信号纯度和输出功率的新标准[J];电子测试;2009年08期
9 刘才斌;魏友国;陈运涛;;VXI微波信号源仪器模块的设计与实现[J];微计算机信息;2006年04期
10 贾青松;王天枢;张鹏;孙鸿伟;董科研;刘鑫;孔梅;姜会林;;基于双波长布里渊光纤激光器的微波信号产生[J];中国激光;2014年07期
相关会议论文 前1条
1 胡文华;许东兵;双爱琼;王竹;;虚拟仪器在微波信号源中设计的应用[A];第六届全国计算机应用联合学术会议论文集[C];2002年
相关博士学位论文 前4条
1 郭勇;微波信号光子学产生及处理的理论与实验研究[D];电子科技大学;2016年
2 乔云飞;基于微波光子学的可调微波信号源[D];浙江大学;2013年
3 李沫;RoF系统中60GHz传输技术及光域微波信号处理技术研究[D];清华大学;2011年
4 于源;全光微波信号处理技术的研究[D];华中科技大学;2013年
相关硕士学位论文 前10条
1 梁建惠;光电振荡器的性能与设计研究[D];贵州大学;2015年
2 曹春雨;基于FPGA的窄脉冲微波信号参数测试的研究与实现[D];南京理工大学;2014年
3 李卉梓;基于光子学技术的相位可调谐倍频微波信号发生器的研究[D];华中科技大学;2014年
4 翁俊;微波信号光纤稳相传输研究[D];西南交通大学;2016年
5 童玲;C波段微波信号相干光传输关键技术研究[D];电子科技大学;2016年
6 杨凤骁;微波信号光纤传输稳相技术研究[D];电子科技大学;2016年
7 尹彩霞;基于M-Z调制器的光学谐波倍频产生微波信号的研究[D];西华师范大学;2016年
8 訾月姣;基于光纤锁模腔的光子微波信号产生技术研究[D];贵州大学;2016年
9 刘文雅;基于微波光子学的微波信号生成技术研究[D];西安电子科技大学;2015年
10 马宁;基于微波光子技术的微波信号参数测量[D];西安电子科技大学;2015年
,本文编号:2156065
本文链接:https://www.wllwen.com/kejilunwen/dianzigongchenglunwen/2156065.html