基于SLWE的自适应熵编码器概率估计模型应用研究
[Abstract]:Entropy coding, especially adaptive entropy coding, is the core of most image and video compression coding standards and many non-standard encoders. For example, MQ encoders in JPEG2000 and CABAC encoders in H.264/AVC are used for adaptive two value arithmetic coding. The coding performance of entropy coding is mainly related to two factors, one is probability model. The degree to which the actual characteristic of the source is consistent with the source, two is the way the encoder assigns the code word to the coded symbol based on the probability model. For the second point, the average code length of many entropy coding methods is very close to the Shannon entropy of the given probability model, and the performance improvement in this respect is very limited. For the first point, when the statistical characteristics of the coded data are relatively stable, the establishment of the probability model is relatively easy, but when the statistical characteristics of the coded data often change, the probability model often deviates from the actual characteristics of the source and affects the coding performance. If the probability model can reflect the characteristics of the data to be encoded in real time, the probability model can change the characteristics in real time. Based on the above background, this paper studies the establishment of the entropy encoder probability model when the data characteristics are changing frequently. Firstly, it introduces the correlation definition of the source entropy, the probability model and the estimation entropy, which is closely related to the entropy coding, and analyzes the code length of entropy coding and the data to be encoded. The relationship between the source entropy and the estimation entropy under the constraint of the probability model, the important role of the probability estimation model in the adaptive entropy encoder is expounded. Based on the above basic theory, the definition of the flat and non-stationary data and the relative mathematical representation are given, and the static model and the traditional Bayesian based on the Bayes are analyzed. The probability estimation algorithm of the parameter estimation theory is not suitable for the reason of the probability estimation of non stationary data and has been verified by the related experiments. At last, the probability estimation algorithm of two classical non stationary environments is introduced, and the probability estimation effect of each probability estimation method for different characteristic data is analyzed. Finally, the influence of the intensity of the nonstationary data characteristics on the whole probability estimation process is discussed. The basic idea of the adaptive ability of the probability estimation algorithm based on the change characteristics of the data is proposed. Secondly, the probability of the stochastic learning weak estimation (stochastic learning weak estimators, SLWE) is studied in the nonstationary data probability. The application of the estimation problem is introduced. First, the two distribution and multi distribution parameter estimation process based on SLWE is introduced, and its applicability is analyzed from two aspects of qualitative and quantitative. The inherent principle of the probability updating is analyzed deeply, and compared with the window method, the inner connection between the method and the window method is analyzed. Finally, the framework of the interval coding is used. The interval coding method of probability estimation using SLWE algorithm is designed. The problem of interval degradation which may be caused by the transplantation of SLWE algorithm into the interval coding and the decoding problem caused by the rounding error of floating point accumulation are described in detail. Finally, the new interval coding method is analyzed by the actual analysis. In the end, a parameter adaptive SLWE algorithm based on adaptive ability of adaptive adjustment algorithm based on local characteristic changes of data is proposed. The algorithm aims at the complex characteristics of the change of the actual data characteristics. First, the non stationary degree of the data is analyzed by the change of the local statistical characteristics of the data. In the end, the position of the characteristic change is taken as the change point, and the learning factor of the SLWE algorithm is adjusted adaptively according to the position of the change point and the degree of change of the characteristic. The adaptive ability and convergence ability of the algorithm are changed to adapt to the change of the local characteristic of the data. Finally, the experimental analysis is given.
【学位授予单位】:哈尔滨工业大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TN762
【相似文献】
相关期刊论文 前10条
1 陈华 ,丁杰伟;自适应坐标格绘制的实现[J];电脑编程技巧与维护;2000年12期
2 邵任翔;自适应网络考试系统的设计与实现[J];广州大学学报(自然科学版);2004年02期
3 侯勇严,孙瑜,郭文强;一种自适应模糊PID控制器的仿真研究[J];陕西科技大学学报;2004年02期
4 申利民;汪新俊;;一个自适应Web站点构架的设计[J];计算机技术与发展;2006年02期
5 曹冕;胡晨;姚国良;;嵌入式系统中自适应背光的设计与实现[J];电子器件;2007年01期
6 周建华;王加阳;贺文华;;基于移动Agent的自适应动态取证系统[J];微计算机信息;2007年06期
7 王华;应晶;蒋涛;;基于审查不确定性的预见式软件自适应[J];浙江大学学报(工学版);2010年01期
8 冯凯平;;自适应测试在计算机基础课考试中的应用[J];信息与电脑(理论版);2011年01期
9 高新建;李艳玲;张明强;栾玉环;孙丰荣;姚桂华;;实时心肌声学造影图像的自适应时空滤波[J];计算机工程;2011年S1期
10 徐玉华;蔡丽红;刘政;杨涛;;用延迟和非延迟自适应匹配的复杂动力网络自适应同步(英文)[J];郧阳师范高等专科学校学报;2012年06期
相关会议论文 前10条
1 卢志刚;易之光;赵翠俭;李兵;吴士昌;;一种新型的自适应逆扰动消除器[A];第二届全国信息获取与处理学术会议论文集[C];2004年
2 黄鹤;张丹;于伟东;严灏景;;功能自适应纺织品[A];第七届功能性纺织品及纳米技术应用研讨会论文集[C];2007年
3 王蓬;宋明玉;张林芳;王新远;;广义自适应相干累积算法改进及其在线谱增强中的应用[A];中国声学学会2007年青年学术会议论文集(上)[C];2007年
4 于慧君;陈章位;;道路模拟试验自适应时域复现控制方法研究[A];第九届全国振动理论及应用学术会议论文摘要集[C];2007年
5 路迎晨;李兵;;一类自适应预测算法的全局收敛性[A];04'中国企业自动化和信息化建设论坛暨中南六省区自动化学会学术年会专辑[C];2004年
6 陈博;方滨兴;云晓春;;一种自适应的蠕虫检测和遏制方法的研究[A];全国网络与信息安全技术研讨会'2005论文集(上册)[C];2005年
7 李国;张心珂;杨国庆;高庆吉;;一种自适应的运动目标实时跟踪算法[A];2006年首届ICT大会信息、知识、智能及其转换理论第一次高峰论坛会议论文集[C];2006年
8 杨寒光;;电子地图中的自适应注记[A];工程设计与计算机技术:第十五届全国工程设计计算机应用学术会议论文集[C];2010年
9 孟宏;刘玉;;基于复调制的自适应细化谱算法[A];2008中国仪器仪表与测控技术进展大会论文集(Ⅰ)[C];2008年
10 王平;冯海朋;李勇;康燕;;一种工业无线网络的自适应节能机制[A];2009中国仪器仪表与测控技术大会论文集[C];2009年
相关博士学位论文 前10条
1 王胜春;自适应时频分析技术及其在故障诊断中的应用研究[D];山东大学;2007年
2 刘亚;复杂非线性系统的智能自适应重构控制[D];南京航空航天大学;2003年
3 马国成;车辆自适应巡航跟随控制技术研究[D];北京理工大学;2014年
4 吴礼福;脉冲噪声自适应有源控制算法研究[D];南京大学;2012年
5 梁凌宇;人脸图像的自适应美化与渲染研究[D];华南理工大学;2014年
6 叶镇清;自适应聚类算法挖掘网络模块结构及其在酵母蛋白作用网络中的应用[D];浙江大学;2008年
7 伍宇;移动计算中自适应负载转移决策模型研究[D];复旦大学;2012年
8 朱磊;基于自适应邻域概念的视频图像处理技术研究[D];中国科学技术大学;2007年
9 杨洋;三维人体动作分析及其在智能舞蹈教学系统中的应用[D];中国科学技术大学;2012年
10 田勇;室内无线传感器网络环境自适应定位和路由算法研究[D];大连理工大学;2014年
相关硕士学位论文 前10条
1 赵昆鹏;管道实时在线自适应仿真技术研究[D];西安石油大学;2015年
2 吕铖杰;串联弹性关节控制与交互刚度辨识[D];浙江大学;2015年
3 王波;两种基于万有引力定律自适应算法[D];渤海大学;2015年
4 韦翔鸿;雷达定量降水估测自适应优化算法研究[D];南京信息工程大学;2015年
5 查志远;自适应范数约束图像正则化重建研究[D];昆明理工大学;2015年
6 李威;射频一体式EAS抗干扰研究与设计[D];郑州大学;2015年
7 费强;多功能自适应伪装装置的研究与设计[D];南京理工大学;2015年
8 张宁;图像引导的体外自适应放疗在宫颈癌治疗中的应用研究[D];安徽医科大学;2015年
9 王帅;基于自适应重启的压缩感知算法[D];华中师范大学;2015年
10 刘金荣;种子流视觉检测系统自适应标定的软件研制[D];山西农业大学;2015年
,本文编号:2170042
本文链接:https://www.wllwen.com/kejilunwen/dianzigongchenglunwen/2170042.html