掺杂光子晶体光纤的传输特性及应用研究
[Abstract]:In this paper, the characteristics of doped photonic crystal fiber (PCFs) are studied by full vector finite element method. The influence of the structure parameters on the dispersion and nonlinearity of photonic crystal fiber is studied and the hybrid photonic crystal fiber with high nonlinearity and flat dispersion is studied theoretically. The main contents and achievements are as follows: 1. The transmission characteristics of bismuth doped photonic crystal fiber are studied theoretically. When the core is doped with high refractive index material, the nonlinear coefficient of photonic crystal fiber is improved, and the dispersion of the fiber is also changed. The influence of the structure parameters such as the diameter of doped core, the refractive index of medium, the diameter of air hole and the lattice constant on the dispersion characteristics and nonlinear coefficient of photonic crystal fiber is studied theoretically. Thus the structural design of photonic crystal fibers with high nonlinearity and specific dispersion characteristics is obtained. 2. Near zero flat dispersion and high nonlinear photonic crystal fibers with mixed core are proposed. The hybrid fiber core is composed of two kinds of bismuth doped materials with high refractive index. This structure not only improves the nonlinear characteristics of photonic crystal fiber greatly, but also can control the dispersion curve distribution. By analyzing the influence of fiber structure parameters on dispersion and nonlinearity, a photonic crystal fiber with near zero dispersion flat and high nonlinearity is obtained. Under the optimized structure parameters, the dispersion value of the fiber is about 0.5537ps/ (nm-km) at 1.55 渭 m wavelength, and the nonlinear coefficient is as high as 3301 W1km-1. In the wavelength range from 1.496 渭 m to 1.596 渭 m, the flat dispersion is distributed between 0.57ps/ (nm-km) and -1.93 ps/ (nm-km).
【学位授予单位】:北京邮电大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TN253
【共引文献】
相关博士学位论文 前10条
1 余贶t-;基于吸收光谱法的光纤气体传感器及传感网络[D];北京交通大学;2011年
2 张虎;空芯光子带隙光纤的结构设计和特性研究[D];北京邮电大学;2009年
3 李宏雷;新型光子晶体光纤及其实用化相关技术研究[D];北京交通大学;2010年
4 马会芳;微结构光纤中超连续谱的产生及特性优化研究[D];北京邮电大学;2013年
5 成纯富;超短激光脉冲与光子晶体光纤非线性相互作用的研究[D];华中科技大学;2013年
6 郝锐;高双折射光子晶体光纤的结构设计与特性研究[D];燕山大学;2013年
7 郑斯文;基于高速大容量光纤通信用大芯径光纤及多芯光纤的研制[D];北京交通大学;2014年
8 许强;新型光子晶体光纤的数值模拟及应用研究[D];陕西师范大学;2014年
9 梁文斌;微结构特种光纤结构设计与特性研究[D];华中科技大学;2013年
10 臧可;高阶光纤拉曼放大器的特性研究[D];北京邮电大学;2013年
相关硕士学位论文 前7条
1 侯金钗;光子晶体光纤的带隙特性研究[D];燕山大学;2009年
2 刘春香;掺铒及掺锗光子晶体光纤非线性的研究[D];哈尔滨师范大学;2009年
3 雷生宝;参量放大器中噪声特性分析[D];北京邮电大学;2013年
4 姚当;基于光子晶体光纤的超连续谱相干性研究[D];湖南大学;2013年
5 孙霁;结构对光子晶体光纤受激布里渊散射慢光的影响及应用[D];兰州理工大学;2014年
6 黄惠;双芯光子晶体光纤的结构设计与特性分析[D];燕山大学;2014年
7 潘兴颂;基于多芯微结构光纤耦合机制的快慢光传输[D];北京邮电大学;2014年
,本文编号:2170517
本文链接:https://www.wllwen.com/kejilunwen/dianzigongchenglunwen/2170517.html