改进型离子掩膜技术制作的玻璃基光波导研究
发布时间:2018-08-26 15:54
【摘要】:随着社会的发展,人们对信息传输和处理的速度提出了越来越高的要求。传统的电互连因为其固有的物理瓶颈,已经不能继续适应高速信息社会的发展。光互连以其抗电磁干扰、大带宽、高互连密度等优势,成为解决电互连问题的最佳途径。光波导自身可以实现小半径弯曲,且容易实现波分复用技术,所以波导互连已经成为板级光互连中的一个主要连接方式。玻璃基光波导具有损耗小、环境稳定性好、易于集成、成本低等优势,因此非常适合板级光互连中光传输层的制作。由于电场辅助离子交换过程存在热均匀性问题,不适用于大尺寸基片中光波导的制作,所以目前一般都是采用Ag+-Na+热离子交换的方法。但是这种方法制作的表面光波导因为其折射率分布、表面散射和“银线”等原因,损耗较大,失去了在板级光互连制作中的优势。针对以上问题,本文采用改进型K+离子掩膜技术在玻璃基片上制作了低损耗掩埋型光波导,实验过程共分为三步:(一)通过K+-Na+离子交换在玻璃基片表面制作K+离子掩膜层;(二)通过Ag+-Na+离子交换制作光波导结构;(三)通过Na+-Ag+离子反交换制作掩埋型光波导。经过实验优化,制得的光波导传输损耗为0.23dB/cm,耦合损耗为0.23dB。与传统Ag+-Na+离子交换相比,光波导损耗有大幅度地降低。与电场辅助离子交换相比,插入损耗相近,但制作过程和设备大大简化,也避免了离子交换过程中出现的掩埋深度不均匀的现象,因此本文提出的改进型K+离子掩膜技术适用于板级光互连中光互连层的制作。本文从离子交换的物理机制出发,结合实验相关参数,针对改进型K+离子掩膜技术建立了离子交换理论模型,最后通过实验验证了理论模型的正确性,为今后的光波导制作提供了一种工具。
[Abstract]:With the development of society, the speed of information transmission and processing has become more and more demanding. Traditional electrical interconnection can not continue to adapt to the development of high-speed information society because of its inherent physical bottleneck. Optical interconnection has become the best way to solve the problem of electrical interconnection because of its advantages of anti-electromagnetic interference, large bandwidth and high interconnection density. The optical waveguide itself can realize small radius bending, and it is easy to realize wavelength division multiplexing technology, so the waveguide interconnection has become a main connection mode in the board-level optical interconnection. Glass-based optical waveguide has the advantages of low loss, good environmental stability, easy integration and low cost, so it is very suitable for the fabrication of optical transmission layer in the board-level optical interconnection. Due to the thermal homogeneity of the field-assisted ion-exchange process, it is not suitable for the fabrication of optical waveguides in large-sized substrates, so the Ag + - Na + thermal ion-exchange method is generally used at present. In view of the above problems, a low loss buried optical waveguide is fabricated on glass substrates by improved K + ion mask technology. The experimental process is divided into three steps: (1) K + ion mask is fabricated on glass substrates by K + - Na + ion exchange; (2) optical waveguides are fabricated by Ag + - Na + ion exchange. (3) The buried waveguide is fabricated by Na + - Ag + ion back-exchange. The transmission loss of the waveguide is 0.23dB/cm and the coupling loss is 0.23dB. Compared with the traditional Ag + - Na + ion exchange, the loss of the optical waveguide is greatly reduced. The improved K + ion mask technology proposed in this paper is suitable for the fabrication of optical interconnection layers in board-level optical interconnections. Based on the physical mechanism of ion exchange and the related experimental parameters, the improved K + ion mask technology is established. The theoretical model of ion exchange is verified by experiments, which provides a tool for fabricating optical waveguides in the future.
【学位授予单位】:浙江大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TN252
本文编号:2205397
[Abstract]:With the development of society, the speed of information transmission and processing has become more and more demanding. Traditional electrical interconnection can not continue to adapt to the development of high-speed information society because of its inherent physical bottleneck. Optical interconnection has become the best way to solve the problem of electrical interconnection because of its advantages of anti-electromagnetic interference, large bandwidth and high interconnection density. The optical waveguide itself can realize small radius bending, and it is easy to realize wavelength division multiplexing technology, so the waveguide interconnection has become a main connection mode in the board-level optical interconnection. Glass-based optical waveguide has the advantages of low loss, good environmental stability, easy integration and low cost, so it is very suitable for the fabrication of optical transmission layer in the board-level optical interconnection. Due to the thermal homogeneity of the field-assisted ion-exchange process, it is not suitable for the fabrication of optical waveguides in large-sized substrates, so the Ag + - Na + thermal ion-exchange method is generally used at present. In view of the above problems, a low loss buried optical waveguide is fabricated on glass substrates by improved K + ion mask technology. The experimental process is divided into three steps: (1) K + ion mask is fabricated on glass substrates by K + - Na + ion exchange; (2) optical waveguides are fabricated by Ag + - Na + ion exchange. (3) The buried waveguide is fabricated by Na + - Ag + ion back-exchange. The transmission loss of the waveguide is 0.23dB/cm and the coupling loss is 0.23dB. Compared with the traditional Ag + - Na + ion exchange, the loss of the optical waveguide is greatly reduced. The improved K + ion mask technology proposed in this paper is suitable for the fabrication of optical interconnection layers in board-level optical interconnections. Based on the physical mechanism of ion exchange and the related experimental parameters, the improved K + ion mask technology is established. The theoretical model of ion exchange is verified by experiments, which provides a tool for fabricating optical waveguides in the future.
【学位授予单位】:浙江大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TN252
【参考文献】
相关期刊论文 前4条
1 郝寅雷;冯泽明;曾福林;王志坚;杨建义;王明华;;玻璃基交叉波导的损耗特性研究[J];光电子·激光;2015年12期
2 郝寅雷;郑伟伟;江舒杭;周强;李锡华;杨建义;江晓清;王明华;;玻璃基平面光功分器技术工程化研究[J];红外与激光工程;2011年02期
3 郝寅雷;郑伟伟;江舒杭;谷金辉;孙一翎;杨建义;李锡华;周强;江晓清;王明华;;低损耗离子交换玻璃基光波导制备与分析[J];无机材料学报;2009年05期
4 黄腾超,沈亦兵,侯西云,侯昌伦,白剑;离子交换玻璃波导的模型分析[J];中国激光;2003年02期
相关博士学位论文 前2条
1 裴重阳;石墨烯辅助玻璃基集成光学器件的研究[D];浙江大学;2015年
2 郑伟伟;玻璃基离子交换工艺及波导器件的研究[D];浙江大学;2011年
相关硕士学位论文 前3条
1 石伟丞;玻璃基多模弯曲光波导的设计与制备[D];浙江大学;2014年
2 郑斌;玻璃基双层掩埋式光波导的制备与表征[D];浙江大学;2012年
3 陈叙;玻璃基光波导离子交换技术的研究[D];浙江大学;2005年
,本文编号:2205397
本文链接:https://www.wllwen.com/kejilunwen/dianzigongchenglunwen/2205397.html