基于深度特征学习的电子电路故障诊断
[Abstract]:Fault diagnosis of electronic circuits has been a hot topic in the field of circuits. With the further improvement of the scale and integration of electronic circuits, as well as the nonlinearity of components in the analog part of electronic circuits and the effect of tolerance effect, the fault characteristics of electronic circuits present complex nonlinear situations. Higher requirements for feature extraction and diagnosis of electronic circuit faults are put forward. In this paper, a method of electronic circuit fault diagnosis based on depth feature learning is proposed. Because the essence of circuit fault feature extraction is to find the nonlinear expression of fault response signal, the depth learning technique is just a kind of feature extraction technology for the data layer by layer nonlinear mapping expression. Therefore, combining the characteristics of circuit fault feature extraction and depth learning technology, the research of circuit fault depth feature extraction is carried out in this paper. This paper focuses on the following two points: (1) A fault feature extraction method based on SAE-SOFTMAX is proposed. This method optimizes the feature extraction performance of stack automatic encoder by constructing the depth learning framework of (SAE) and SOFTMAX classifier, combining unsupervised pre-training and supervised global fine-tuning. The depth extraction of circuit fault features is realized. (2) two fault diagnosis models of electronic circuits based on SAE feature extraction are presented. It includes diagnosis model based on SAESOFTMAX and diagnosis model based on SAE-SVM. The former fuses SAE and SOFTMAX classification layer to realize the fast extraction and diagnosis of circuit fault features, the latter uses SAE to extract features and combines with robust SVM to form a circuit fault diagnosis model. The last two circuit simulation experiments show that the circuit fault feature extraction technology based on SAE-SOFTMAX has a good effect, and has obvious technical advantages over traditional wavelet and principal component analysis methods, and has a high feature evaluation index. In this paper, two fault diagnosis models are presented. For the diagnosis model based on SAE-SOFTMAX, the diagnostic effect and performance are better than the traditional neural network diagnosis model.
【学位授予单位】:合肥工业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TN707
【相似文献】
相关期刊论文 前10条
1 马少华,高峰,李敏,吴成东;神经网络分类器的特征提取和优选[J];基础自动化;2000年06期
2 管聪慧,宣国荣;多类问题中的特征提取[J];计算机工程;2002年01期
3 胡威;李建华;陈波;;入侵检测建模过程中特征提取最优化评估[J];计算机工程;2006年12期
4 朱玉莲;陈松灿;赵国安;;推广的矩阵模式特征提取方法及其在人脸识别中的应用[J];小型微型计算机系统;2007年04期
5 赵振勇;王保华;王力;崔磊;;人脸图像的特征提取[J];计算机技术与发展;2007年05期
6 冯海亮;王丽;李见为;;一种新的用于人脸识别的特征提取方法[J];计算机科学;2009年06期
7 朱笑荣;杨德运;;基于入侵检测的特征提取方法[J];计算机应用与软件;2010年06期
8 王菲;白洁;;一种基于非线性特征提取的被动声纳目标识别方法研究[J];软件导刊;2010年05期
9 陈伟;瞿晓;葛丁飞;;主观引导特征提取法在光谱识别中的应用[J];科技通报;2011年04期
10 王华,李介谷;人脸斜视图象的特征提取与恢复[J];上海交通大学学报;1997年01期
相关会议论文 前10条
1 尚修刚;蒋慰孙;;模糊特征提取新算法[A];1997中国控制与决策学术年会论文集[C];1997年
2 潘荣江;孟祥旭;杨承磊;王锐;;旋转体的几何特征提取方法[A];第一届建立和谐人机环境联合学术会议(HHME2005)论文集[C];2005年
3 薛燕;李建良;朱学芳;;人脸识别中特征提取的一种改进方法[A];第十三届全国图象图形学学术会议论文集[C];2006年
4 杜栓平;曹正良;;时间—频率域特征提取及其应用[A];2005年全国水声学学术会议论文集[C];2005年
5 黄先锋;韩传久;陈旭;周剑军;;运动目标的分割与特征提取[A];全国第二届信号处理与应用学术会议专刊[C];2008年
6 魏明果;;方言比较的特征提取与矩阵分析[A];2009系统仿真技术及其应用学术会议论文集[C];2009年
7 林土胜;赖声礼;;视网膜血管特征提取的拆支跟踪法[A];1999年中国神经网络与信号处理学术会议论文集[C];1999年
8 秦建玲;李军;;基于核的主成分分析的特征提取方法与样本筛选[A];2005年中国机械工程学会年会论文集[C];2005年
9 刘红;陈光,
本文编号:2268709
本文链接:https://www.wllwen.com/kejilunwen/dianzigongchenglunwen/2268709.html