超低比导通电阻槽型功率MOS新结构与机理研究
[Abstract]:As the core of power electronic system, power MOS device is one of the research hotspots to realize low power consumption. Among them, the total power consumption of power MOS mainly includes static power consumption and dynamic power consumption, the static power consumption of the device is mainly measured by on-resistance, and the dynamic power consumption is measured by the gate leakage capacitance of the device. In order to reduce the on-resistance and gate leakage capacitance of power MOS, two new types of power MOS devices are proposed in this paper. The static characteristics (including forward on-on characteristics and voltage-resistant characteristics), dynamic characteristics and feasible process implementation schemes are studied. The simulation results show that the two new structures can greatly improve the performance of the device and reduce the power consumption of the device significantly while maintaining the voltage resistance of the device. An ultra-low specific on-resistance and ultra-low dynamic loss power FINFET device with separation gate is proposed. The structure is characterized by having a fin gate and a separation gate. The fin gate surrounds the P-well region from three dimensions. The separation gate electrically connected with the source potential is arranged on both sides of the drift region and separated from the drift region by a wedge oxide layer. First, the fin gate structure increases the channel width and modulates the current distribution, thus reducing the specific on-resistance of the device and increasing the transconductance of the device. Secondly, the gate leakage and the switching loss are greatly reduced by the separation gate structure. Thirdly, the separation gate structure is used as the depletion of the source field-assisted drift region, thus increasing the doping concentration in the drift region of the device, and further reducing the specific on-resistance of the device. Fourth, the separation gate structure acts as the source field plate, modulates the high electric field at the source and drain ends, and makes the electric field distribution in the drift region more uniform, thus ensuring the voltage resistance of the device. The simulation results show that the on-resistance of the new structure is reduced by 60% and 47%, respectively, compared with the conventional structure and the conventional overjunction device. At the same time, the gate leakage charge of the new structure is 55. 2% lower than that of the structure without separate gate. An ultra-low specific on-resistance VDMOS device with charge accumulation layer is proposed. The structure is characterized by an extended gate structure with an extended gate extending to the leakage end and two PN junctions in the extended gate. On the one hand, an electron accumulation layer is formed on both sides of the extended gate in the positive guide state, thus introducing two low-resistance current paths from the source to the drain. The resulting current path not only greatly reduces the on-resistance of the device, but also weakens the dependence of the on-resistance of the device on the doping concentration in the drift region. On the other hand, in the voltage-resistant state, the N strip inside the extended gate will exhaust the N strip in the drift region, thus increasing the doping concentration in the drift region of the device and further reducing the on-resistance of the device. In particular, the two PN junctions within the extended gate play a very important role. In the positive-guide state, one of the PN junctions inversely deflects the voltage between the gate leaks, thus reducing the gate leakage current, while in the voltage-tolerant state, the other PN junction withstands a high voltage between the drain and the gate, which ensures the device has a high breakdown voltage. Because the extended gate of the device extends to the leakage end of the device, the new structure has a large gate leakage capacitance, which leads to the degradation of the switching characteristics, so the new structure is suitable for use in if and low frequency applications. The simulation results show that compared with the conventional overjunction devices, the new structure decreases the on-resistance by 80% when the voltage is maintained at 800V level.
【学位授予单位】:电子科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TN386.1
【相似文献】
相关期刊论文 前10条
1 丁翔;;接地导通电阻校准方法的研究[J];电子产品可靠性与环境试验;2006年03期
2 赵佶;;罗姆发布第二代SiC制MOSFET,可抑制通电劣化现象[J];半导体信息;2012年04期
3 张明兴;;导通电阻为零的模拟开关[J];电子技术;1986年12期
4 孙隽;;导通电阻极大减小的新型垂直功率MOSFET结构[J];电子工艺技术;1986年04期
5 Daisuke Ueda ,李巍;一种能降低导通电阻的新型纵向功率MOSFET结构[J];微电子学;1987年02期
6 ;新品之窗[J];电子元器件应用;2002年06期
7 陈力;冯全源;;低压沟槽功率MOSFET导通电阻的最优化设计[J];微电子学;2012年05期
8 ;Vishay发布采用ThunderFET~汶技术的通过AEC-Q101认证的最新MOSFET[J];电子设计工程;2014年06期
9 张雯,阎冬梅;VDMOSFET的最佳化设计研究(500V)[J];辽宁大学学报(自然科学版);2004年01期
10 王颖;程超;胡海帆;;沟槽栅功率MOSFET导通电阻的模拟研究[J];北京工业大学学报;2011年03期
相关会议论文 前5条
1 谌怡;刘毅;王卫;夏连胜;张篁;朱隽;石金水;章林文;;GaAs光导开关的导通电阻[A];第九届中国核学会“核科技、核应用、核经济(三核)”论坛论文集[C];2012年
2 孟坚;高珊;陈军宁;柯导明;孙伟锋;时龙兴;徐超;;用阱作高阻漂移区的LDMOS导通电阻的解析模型[A];2005年“数字安徽”博士科技论坛论文集[C];2005年
3 武洁;方健;李肇基;;单晶扩散型LDMOS特性分析[A];展望新世纪——’02学术年会论文集[C];2002年
4 武洁;方健;李肇基;;单晶扩散型LDMOS特性分析[A];中国电工技术学会电力电子学会第八届学术年会论文集[C];2002年
5 ;降低双层金属布线导通电阻不合格率 中国电子科技集团公司第二十四研究所单片工艺室PVD工序心一QC小组[A];2007年度电子信息行业优秀质量管理小组成果质量信得过班组经验专集[C];2007年
相关重要报纸文章 前2条
1 四川 钟荣;再议光耦合器的检测方法[N];电子报;2005年
2 山东 毛兴武;由STA500组成的60W D类放大器[N];电子报;2002年
相关博士学位论文 前4条
1 章文通;超结功率器件等效衬底模型与非全耗尽工作模式研究[D];电子科技大学;2016年
2 于秀丽;人工作业系统(MOS)建模与员工组织优化[D];广东工业大学;2013年
3 周坤;高压低功耗MOS栅控功率器件新结构与模型研究[D];电子科技大学;2017年
4 黄海猛;超结器件的模型研究及优化设计[D];电子科技大学;2013年
相关硕士学位论文 前10条
1 马达;超低比导通电阻槽型功率MOS新结构与机理研究[D];电子科技大学;2017年
2 吴克滂;功率MOSFET的终端耐压特性研究[D];西南交通大学;2015年
3 汪德波;60V 功率U-MOSFET失效分析与再设计[D];西南交通大学;2015年
4 吴文杰;一种基于曲率结扩展原理的衬底终端结构的研究[D];电子科技大学;2014年
5 徐青;槽型高压低功耗横向MOSFET研究[D];电子科技大学;2015年
6 翟华星;基于离子注入工艺的新型SiC IGBT的设计与仿真[D];西安电子科技大学;2014年
7 廖涛;电磁炉用NPT型IGBT的研究[D];东南大学;2015年
8 于冰;基于0.25μm工艺的低压Power MOS设计与研究[D];东南大学;2015年
9 周倩;一种低导通电阻60V Trench MOSFET的设计与制造[D];上海交通大学;2015年
10 杨萌;低导通电阻碳化硅光导开关研究[D];西安电子科技大学;2015年
,本文编号:2277504
本文链接:https://www.wllwen.com/kejilunwen/dianzigongchenglunwen/2277504.html