北斗导航型接收终端简化型稳健平方根容积卡尔曼滤波
[Abstract]:This paper focuses on reducing the complexity of the algorithm in dynamic location, reducing the computational complexity, improving the computational efficiency, solving the mismatch of the dynamic location model, and using a single model with large error. To solve the problem that the state noise and measurement noise are non-Gao Si white noise in dynamic positioning, three kinds of problems are studied. The main contents and innovations are as follows: 1. The carrier state equation based on satellite navigation is linear, and the weighted sum of the volume points transferred by the state transfer matrix is zero when the robust square root volume (Square root Cubature Kalman Filtering-SCKF) is updated. The standard KF algorithm can be used to update the state, and the SCKF; is still used in the measurement update process. In this paper, a simplified robust square-root volume Kalman algorithm (Simplified SCKF, for SSCKF). Is proposed. This algorithm aims to solve the problem of large amount of computation and low efficiency in dynamic navigation. The simulation and measured data show that the precision of SSCKF is equal to that of SCKF, and the solution time is about 25% lower than that of SCKF algorithm, which can effectively reduce the complexity of the algorithm and improve the efficiency of the algorithm. 2. Based on SSCKF, and variable dimensional interactive multimode theory, a simplified robust square root volume variable dimension interactive multimode algorithm is proposed. In order to solve the problem of model competition caused by incomplete coverage of conventional interactive multimode model set and excessive number of models, the model with different dimensions, such as uniform model and uniform acceleration model, is filtered in parallel at the same time. The corresponding likelihood function is calculated from the measurement residuals of the two models, the weight of the filtering results of the two models is updated, and the final weighted sum is taken as the output of the whole variable-dimensional model. The state input value of the next sub-model does not use its own filtering result at the last moment, but the global output of the variable dimensional interactive model is multiplied by the value obtained by the dimension conversion matrix. This ensures the accuracy of the state input values at each time. 3. In view of the fact that the state noise and the measurement noise generally present non-Gao Si white noise in the dynamic navigation process, this paper presents a simplified SCKF Gao Si and algorithm. The kurtosis and correlation coefficient of pseudo-range measurement noise in dynamic navigation are analyzed. If the non-Gao Si noise in the actual motion is still forced to be treated as Gao Si white noise, the filtering accuracy will be affected. Several Gao Si white noises are used as the subterms of Gao Si, and the weighted sum of them is used to approximate the non-Gao Si white noise, and at the same time to limit the total number of sub-Gao Si items at each time to ensure the efficiency of the solution at each time. The experimental data show that the algorithm can effectively suppress the influence of non-Gao Si white noise and improve the stability and filtering accuracy of the algorithm.
【学位授予单位】:国防科学技术大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TN967.1;TN713
【参考文献】
相关期刊论文 前10条
1 张凯;单甘霖;;基于高斯和与SCKF的非线性非高斯滤波算法[J];仪器仪表学报;2014年11期
2 李小民;杜占龙;郑宗贵;张国荣;毛琼;;基于STSCKF和改进型χ~2检验的模拟电路故障辨识[J];仪器仪表学报;2014年10期
3 王树磊;魏瑞轩;关旭宁;;容积法则辅助的交互式多模型滤波算法[J];控制与决策;2014年09期
4 张鑫春;郭承军;;均方根嵌入式容积卡尔曼滤波[J];控制理论与应用;2013年09期
5 姜伟;吕泽均;蓝瑶;;基于变维交互作用的IMM-CKF算法[J];计算机应用与软件;2013年05期
6 王硕;刘丽;;基于机动转弯目标的自适应交互式多模型算法[J];计算机仿真;2013年04期
7 孙枫;唐李军;;Cubature卡尔曼滤波与Unscented卡尔曼滤波估计精度比较[J];控制与决策;2013年02期
8 孙枫;唐李军;;Cubature卡尔曼滤波-卡尔曼滤波算法[J];控制与决策;2012年10期
9 李振华;宁磊;徐胜男;;基于均差滤波与高斯和的非线性非高斯系统滤波算法[J];控制与决策;2012年01期
10 孙枫;唐李军;;Cubature粒子滤波[J];系统工程与电子技术;2011年11期
相关博士学位论文 前3条
1 何可可;非线性非高斯条件下贝叶斯滤波若干问题研究[D];南京理工大学;2012年
2 曹轶之;非高斯/非线性滤波算法研究及其在GPS动态定位中的应用[D];解放军信息工程大学;2012年
3 唐李军;Cubature卡尔曼滤波及其在导航中的应用研究[D];哈尔滨工程大学;2012年
相关硕士学位论文 前3条
1 李家森;北斗/INS组合导航信息融合滤波算法研究[D];哈尔滨工程大学;2013年
2 陈勇;信息融合技术在组合导航系统中的应用研究[D];南京理工大学;2007年
3 彭竞;非线性滤波技术在卫星导航系统中的应用研究[D];国防科学技术大学;2005年
,本文编号:2297664
本文链接:https://www.wllwen.com/kejilunwen/dianzigongchenglunwen/2297664.html