双向预充控制RSD低能耗触发电路研究
[Abstract]:The development of pulse power supply depends on the development of switching devices to a great extent. Traditional pulse power switches have the disadvantages of limited voltage and current stress, low repetition rate, short life, and poor synchronicity. However, the reverse switching transistor (RSD (Reversely Switched Dynistor) is the most promising substitute in semiconductor switches. RSD is capable of realizing tens of kV high voltages and hundreds of Ka large currents. The microsecond nanosecond turn on three perfect unity, and can realize the whole area synchronous conduction, easy to form the reactor, but according to the RSD unique trigger drive characteristic, the research its reliable trigger technology, is guarantees the RSD high power pulse power supply high efficiency, The key to stability. Firstly, the structure characteristics and trigger principle of RSD are introduced, and two conditions for normal conduction of RSD are described: reverse precharge current can accumulate a certain amount of precharge charge for RSD; The time when the magnetic switch blocks the forward discharge of the main circuit matches the reverse precharge time of the RSD. On this basis, four typical RSD trigger circuits are introduced, and their advantages and disadvantages are compared. Secondly, aiming at the trigger energy consumption of RSD, a new type of RSD bi-directional precharge trigger circuit is proposed. The circuit can reduce the trigger energy consumption on the basis of ensuring the reliable trigger of RSD, and support RSD to realize the modularization of series reactor. In this paper, the design and optimization of the main circuit parameters are realized by analyzing the working principle of the bidirectional precharge trigger circuit and establishing the reverse trigger model. Then, in order to realize the pulse power discharge system, the related devices are selected according to the trigger requirements, and the solutions to the compact and insulating requirements of the trigger circuit are put forward. At the same time, the design of magnetic switch and magnetic reset circuit which can guarantee the reliable conduction of RSD is introduced in detail. The trigger of control circuit is realized by DSP programming. In this paper, a constant current high voltage charging power supply is used as the capacitor charge in the trigger circuit. The charging voltage is high and the control is flexible, which can meet the requirements of multi-module RSD trigger discharge. At last, the experiment platform of high voltage pulse discharge system is built, and the reliable conduction of 1200V RSD series reactor is realized, and the feasibility of RSD bidirectional precharge trigger circuit is verified by experiment. Compared with the traditional resonant precharge scheme, the new trigger circuit can reduce the trigger energy consumption.
【学位授予单位】:燕山大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TN323.6;TN783
【相似文献】
相关期刊论文 前10条
1 秦实宏,何俊佳,程礼椿,黄心汉,邹积岩;一种光隔高压触发电路的研究[J];高电压技术;2000年05期
2 安金龙,马振平;一种通用高性能触发电路的设计[J];河北工业大学成人教育学院学报;2000年04期
3 冯晖 ,林争辉;三相全数字移相触发电路[J];国外电子元器件;2002年03期
4 姜学宝 ,杨耿杰 ,陈树棠;一种新颖的数字移相触发电路的实现[J];微型机与应用;2002年02期
5 李春龙,杨鹏,刘立新,李阳;计数器法在数字触发电路中的应用[J];半导体技术;2003年07期
6 张玉奎,陈元平,李树君;可控硅触发电路的改进[J];继电器;2003年06期
7 韩峰;三相移相触发电路的使用[J];煤矿机械;2004年03期
8 霍星,费英;数字式触发电路[J];渤海大学学报(自然科学版);2004年01期
9 陈楠楠;;触发电路的性能分析及比较[J];电子工业专用设备;2013年05期
10 河川;;超高速触发电路[J];微电子学;1972年05期
相关会议论文 前4条
1 王宇峰;;基于CPLD的晶闸管数字触发电路设计[A];第十五届全国煤矿自动化学术年会和中国煤炭学会煤矿自动化专业委员会学术会议论文集[C];2005年
2 孙宁强;梁大开;丁伟;;基于CPLD的优化消谐PWM数字触发电路的分析和实现[A];江苏省计量测试学会2005年论文集[C];2005年
3 白钢;杨思乾;杨金孝;;进口晶闸管弧焊整流器触发电路的控制电压动态过程分析[A];中国电子学会焊接专业委员会第五届学术会议论文集[C];1995年
4 过雅南;李侃;赵棣新;Koji UENO;;一个基于通用VME插件的中微子望远镜触发电路[A];第11届全国计算机在现代科学技术领域应用学术会议论文集[C];2003年
相关重要报纸文章 前3条
1 江西 尹石荪;单向可控硅触发电路的再讨论[N];电子报;2013年
2 广东 阮勇;简单实用的大功率 可控硅触发电路[N];电子报;2004年
3 黑龙江 刘晶维 王金艳;大功率可控硅高性能触发电路[N];电子报;2001年
相关硕士学位论文 前6条
1 张晔;体外震波治疗心肌缺血系统的研究[D];北京化工大学;2015年
2 李振;数字类型的硬件木马设计实现与分析[D];电子科技大学;2014年
3 彭程程;双向预充控制RSD低能耗触发电路研究[D];燕山大学;2016年
4 闫崇峰;一种新型逆变触发电路[D];青岛大学;2013年
5 杨阳;双六脉波整流触发电路研究[D];青岛大学;2013年
6 董立志;示波器信号调理通道与触发电路设计[D];电子科技大学;2012年
,本文编号:2304820
本文链接:https://www.wllwen.com/kejilunwen/dianzigongchenglunwen/2304820.html