当前位置:主页 > 科技论文 > 电子信息论文 >

超宽带微波低噪声放大器研究

发布时间:2018-11-17 20:53
【摘要】:现代的通讯系统随着信息量的爆炸增长,对于带宽,信息容量的要求与日俱增。超宽带(UWB)无线通讯技术的出现能够很好地解决上诉问题。而低噪声放大器电路作为超宽带接收机的前级电路,其性能关系着整体的带宽,噪声系数,灵敏度,线性度等关键性指标。因此,设计在多倍频程内具有平坦增益的低噪声放大器是实现超宽带通讯系统的核心技术之一,具有重要的研究价值和广阔的发展前景。与此同时,单片微波集成电路技术发展迅速,由于其具有小体积、良好的一致性、高稳定性,批量成本低等特点,被广泛应用于最新低噪声放大器电路的研制中。对比了四种不同的宽带拓扑结构,结合设计带宽要求,采用行波分布式结构理论,对超宽带匹配问题进行了研究,其核心思想是将晶体管的输入输出电容与级间电感结合构成了栅极与漏极等效人工传输线,设计的人工传输线的等效特性阻抗等于端口阻抗,实现了超宽带多倍频程匹配。采用窄微带线(带状电感器)实现所需电感,螺旋电感器寄生电容太大而不适用。基于分布式原理,可知栅极,漏极线存在一定的损耗且随频率改变,结合晶体管的等效电路模型,MMIC工艺设计参数及分布式放大器原理,导出电路最优节数optN的计算公式。传统分布式放大器增益较低,所以采用共源共栅结构代替共源结构,可以得到较低的栅-漏反馈电容和较高的输出并联电阻,使电路具有较宽的频带、较高的增益和较高的线性度。而这仅仅增加了少量的版图面积。针对栅源电容远大于漏源电容导致栅极线与漏极线相速不均衡的问题,在漏极传输线上串联一个m衍生节,可以有效得均衡相速,确保信号在漏极同相叠加输出。基于法国OMMIC 0.15?m GaAs pHEMT工艺加工制作了5级分布式放大器单片电路。测试的时候需要用到容值较大的离片电容元件作为去耦和低频段扩展使用,将外置元件与芯片封装成模块。结果表明,芯片在0.5-18GHz增益大于10dB,不平坦度小于±1d B。输入回波损耗小于-10dB,输出回波损耗小于-12dB,带内噪声系数平均3.5dB。芯片面积为1.8mm×1.2mm。
[Abstract]:With the explosion of information, modern communication systems require more and more bandwidth and information capacity. The emergence of UWB (UWB) wireless communication technology can solve the appeal problem well. As the front circuit of UWB receiver, the performance of low noise amplifier (LNA) is related to the bandwidth, noise coefficient, sensitivity, linearity and so on. Therefore, the design of low noise amplifier with flat gain in multiple frequency range is one of the core technologies to realize UWB communication system, which has important research value and broad development prospect. At the same time, monolithic microwave integrated circuit (MMIC) technology has been widely used in the development of the latest low noise amplifier circuits due to its small volume, good consistency, high stability, low batch cost and so on. In this paper, four different broadband topologies are compared, and the UWB matching problem is studied by using the theory of traveling wave distributed structure combined with the design bandwidth requirements. The core idea is to combine the input and output capacitance of the transistor with the inductance between stages to form a grid and drain equivalent artificial transmission line. The equivalent characteristic impedance of the designed artificial transmission line is equal to the port impedance, and the UWB multi-octave frequency path matching is realized. Narrow microstrip line (strip inductor) is used to realize the required inductance. The parasitic capacitance of spiral inductor is too large to be applicable. Based on the distributed principle, it is known that the grid and drain lines have certain losses and change with the frequency. Combining with the equivalent circuit model of transistors, the parameters of MMIC process design and the principle of distributed amplifiers, the formula for calculating the optimal section number of circuits optN is derived. The gain of traditional distributed amplifier is low, so the low gate leakage feedback capacitance and high output parallel resistance can be obtained by using the common source common-gate structure instead of the common source structure, so that the circuit has a wider frequency band. Higher gain and higher linearity. This adds only a small amount of territory. In order to solve the problem that the gate source capacitance is far larger than the drain source capacitance, the phase velocity of the grid line and the drain line is unbalanced. A m derivative section in series on the drain transmission line can effectively equalize the phase velocity and ensure the superposition of the signal at the drain pole in the same phase. A 5 stage distributed amplifier monolithic circuit is fabricated based on French OMMIC 0. 15 m GaAs pHEMT process. When testing, the off-chip capacitive elements with larger capacity are used as decoupling and low-frequency band expansion, and the external components and the chip are encapsulated into modules. The results show that the gain of 0.5-18GHz is greater than 10 dB and the unflatness is less than 卤1 dB. The input echo loss is less than -10 dB, the output echo loss is less than -12 dB, and the average in-band noise coefficient is 3.5 dB. The chip area is 1.8mm 脳 1.2 mm.
【学位授予单位】:电子科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TN722.3

【参考文献】

相关期刊论文 前4条

1 许春良;王绍东;柳现发;高学邦;;4~20GHz超宽带低噪声放大器单片电路[J];半导体技术;2013年01期

2 俞汉扬;陈良月;李昕;杨涛;高怀;;4~8GHz宽带单片集成低噪声放大器设计[J];电子科技;2011年12期

3 柳现发;王德宏;王绍东;吴洪江;张务永;;0.8~8.5 GHz宽带单片低噪声放大器[J];半导体技术;2008年06期

4 龚金楦;;微波超宽带分布放大器的理论和设计——镜象阻抗匹配法[J];电子对抗技术;1988年05期

相关硕士学位论文 前1条

1 王燕玲;Ku波段单片低噪声放大器研究[D];南京理工大学;2007年



本文编号:2339008

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dianzigongchenglunwen/2339008.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户093da***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com