当前位置:主页 > 科技论文 > 电子信息论文 >

多电子注收集极设计

发布时间:2018-11-24 15:02
【摘要】:由于波长短、频率高、频带宽等特点,微波管被广泛应用于雷达、电子对抗、通信等领域中。微波管是一种通过电子注与微波的相互作用,将电子注的能量转化为微波能量,从而实现微波信号放大的电子系统。随着军事、经济等方面的发展,人们在微波管的工作频率、工作效率、工作带宽等方面建立了更高的标准。而多电子注微波管能够在一定程度上满足这些需求。作为微波管的重要组成部分之一,收集极主要通过回收从互作用区出来的废电子注能量来提高微波管的效率。本文基于微波管模拟器套装MTSS对多电子注收集极设计进行研究,主要围绕以下几个方面来展开。本论文对收集极内场强进行分析,并对收集极性能进行理论计算。由于收集极各级电极所加电压不同,所以收集极内会有一定的电场分布,电子注内电子由于受到电场力的作用,其运动轨迹会发生变化,从而对收集极性能产生影响。本论文利用三种方法对收集极内电场分布进行计算,最终得到收集极内纵向方向的场强与横向方向场强之比与该点位置有关。这里假设该比值为一个定值,通过对入口条件进行分析,计算出电子打在收集极上的位置,从而计算出收集极的效率及回流率,最终计算效率与仿真效率最大相差2.4%,最小相差0.72%。由于单注收集极的设计是多电子注收集极设计的基础,所以本论文对单电子注收集极的设计方面也进行了相关的研究。在多级降压收集极的设计中,各电极尺寸的选取是设计中的重点。这里提出了一种收集极电极参数的计算方法,通过计算电子打在各级电极上所产生的热功率来计算各电极的基本结构尺寸。最终所得到收集极的效率为81.42%,对其进行优化后效率达到84.25%。在单电子注收集极的基础上,本文对多电子注收集极的结构也进行了相关设计。利用单电子注收集极结构尺寸的计算方法对四电子注收集极的结构尺寸进行计算,并利用MTSS对其进行建模仿真。最终得到的收集极效率达到81.36%。本文也对多电子注收集极优化过程中的关键因素进行了分析,并对优化后的多电子注收集极所应满足的要求进行了说明。
[Abstract]:Because of the characteristics of short wavelength, high frequency and bandwidth, microwave tube is widely used in radar, electronic countermeasure, communication and other fields. Microwave tube is an electronic system which converts the energy of electron beam into microwave energy through the interaction of electron beam and microwave, and realizes the amplification of microwave signal. With the development of military, economy and so on, people have established higher standards in microwave tube working frequency, working efficiency, working bandwidth and so on. The multiple electron beam microwave tube can meet these needs to some extent. As one of the important components of microwave tube, collector improves the efficiency of microwave tube mainly by recovering the energy of waste electron beam from the interaction region. In this paper, the design of multi-electron beam collector based on microwave tube simulator MTSS is studied, which is mainly focused on the following aspects. In this paper, the internal field strength of the collector is analyzed, and the performance of the collector is calculated theoretically. Due to the different voltage applied on the collector electrode, there will be a certain electric field distribution in the collector, and the electron trajectory in the electron beam will change because of the effect of the electric field force, which will have an effect on the collection polarity energy. In this paper, three methods are used to calculate the electric field distribution in the collector. Finally, the ratio of the field intensity in the longitudinal direction to the transverse field intensity in the collecting pole is related to the position of the point. It is assumed that the ratio is a certain value. By analyzing the entry conditions, the position of the electron on the collecting pole is calculated, and the efficiency of the collector and the reflux rate are calculated. The maximum difference between the calculated efficiency and the simulation efficiency is 2.4%. The minimum difference is 0.72%. Since the design of single electron beam collector is the basis of multi electron beam collector design, this paper also studies the design of single electron beam collector. In the design of multistage step-down collector, the selection of electrode size is the key point in the design. A method for calculating the parameters of the collector electrode is presented in this paper. The basic structural dimensions of each electrode are calculated by calculating the thermal power generated by the electronic beating on the electrode at all levels. The final efficiency of the collector is 81.42, and the efficiency of the optimized collector is 84.25. On the basis of single electron beam collector, the structure of multi electron beam collector is also designed. The structure size of the four-electron beam collector is calculated by using the method of calculating the structure size of the single electron beam collector, and the MTSS is used to model and simulate the structure size of the four-electron beam collector. The final collection efficiency is 81.36. In this paper, the key factors in the optimization of multi-electron beam collector are also analyzed, and the requirements of the optimized multi-electron beam collector are explained.
【学位授予单位】:电子科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TN12

【参考文献】

相关期刊论文 前9条

1 李为;杨军;吕国强;方卫;沈旭东;;多注耦合腔行波管互作用均匀性研究[J];真空电子技术;2010年05期

2 马亚林;;耦合腔行波管多级降压收集极的模拟设计[J];真空科学与技术学报;2009年06期

3 黄桃;杨中海;金勇兵;金晓林;胡权;秦钰昆;;多级降压收集极CAD中的二次电子发射模型[J];电子与信息学报;2008年05期

4 杨军;胡跃辉;吕国强;邓光晟;;多注行波管[J];中国科技信息;2007年20期

5 杨赤如;贾宝富;朱兆君;廖燕;;Orprogr在多级降压收集极设计中的应用[J];真空电子技术;2007年01期

6 姚列明;杨中海;李斌;黄桃;;行波管收集极的热分析[J];强激光与粒子束;2006年01期

7 廖平,杨中海,李斌,雷文强,廖莉,高迅鸿;MAFIA在行波管多级降压收集极模拟中的应用[J];电子与信息学报;2005年03期

8 丁耀根;多注速调管技术的新进展[J];真空电子技术;2002年05期

9 杨中海,李斌,廖莉,任俊杰,肖礼,雷文强;微波管CAD技术进展[J];真空电子技术;2002年04期

相关博士学位论文 前1条

1 廖平;行波管电子光学系统CAD技术研究[D];电子科技大学;2004年

相关硕士学位论文 前7条

1 张晓冉;三注行波管多级降压收集极研究[D];电子科技大学;2015年

2 雷伦昌;带状注行波管电子光学系统的设计与应用[D];电子科技大学;2015年

3 王军峰;行波管降压收集极的研究及热分析[D];电子科技大学;2009年

4 潘明明;多注行波管中多级降压收集极的模拟设计[D];合肥工业大学;2008年

5 金勇兵;行波管电子光学发射模型及数值模拟分析[D];电子科技大学;2007年

6 蔡竺吟;行波管多级降压收集极计算机模拟设计[D];合肥工业大学;2006年

7 马亚林;行波管多级降压收集极辅助设计计算及其次级电子研究[D];电子科技大学;2006年



本文编号:2354171

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dianzigongchenglunwen/2354171.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户29f1c***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com