当前位置:主页 > 科技论文 > 电子信息论文 >

基于粒子滤波的间歇过程时滞状态估计方法

发布时间:2018-12-12 08:02
【摘要】:间歇过程广泛应用于各类生产行业,在国民经济发展中发挥越来越大的作用。但受限于传感检测技术,关键变量难以实现在线检测,且间歇过程具有高度的非线性、非高斯性和时变性,导致生产过程的监控优化异常困难。基于间歇过程的状态空间模型,状态估计方法能够根据检测值的统计规律,通过滤波的形式实现对关键变量的准确估计。实际生产过程中,存在两种检测值:在线检测值和离线检测值,在线检测值无时滞但精度低,离线检测值有时滞但精度高。另一方面,典型的间歇过程具有周期性批量生产的特点,批次较多。考虑时滞检测值的存在和多批次特性,本文关于间歇过程状态估计的研究内容如下:(1)针对间歇过程中关键变量,在线检测精度低、离线检测时滞大的问题,基于贝叶斯方法提出一种融合时滞检测值信息的状态估计方法。鉴于在线和离线检测值的采样周期不同,分仅有在线检测值和两种检测值并存等两种情况进行分析。该算法以粒子滤波算法为基础,并基于贝叶斯方法对其进行扩展,实现两种检测值的信息融合。数字仿真和生物制氢过程的实验结果表明,该方法能够较好地处理含时滞检测值的状态估计问题,且效果优于不考虑时滞检测值的情况。(2)针对间歇过程的多批次特性,建立时间维度及批次维度的双维状态空间模型,同时考虑时滞检测值的信息,提出一种基于双维状态空间模型的时滞状态估计算法。该算法通过贝叶斯方法及前/后向平滑融合先前批次和时滞检测值的信息,估计效果随批次维度增加而提高,且考虑时滞检测值的状态估计效果优于不考虑时滞检测值时的情况。在数字仿真和生物制氢过程中的仿真应用验证了该算法的有效性。(3)针对双维状态空间模型难以准确建立的问题,结合间歇过程的多批次特性及重复特性,提出一种基于迭代学习的时滞状态估计算法。该算法根据先前批次相同采样时刻的估计状态及测量模型,估计该时刻的期望检测值,并与真实检测值作差得到跟踪误差,通过迭代此误差来提高当前批次的估计精度。对于时滞检测值,同样采用贝叶斯方法和前/后向平滑融合其信息。最后,通过数字仿真和生物制氢过程中的仿真应用验证了所提方法的有效性和实用性。
[Abstract]:Intermittent process is widely used in all kinds of production industries and plays a more and more important role in the development of national economy. However, due to the sensor detection technology, the key variables are difficult to realize on-line detection, and the batch process is highly nonlinear, non-Gao Si and time-varying, which makes the monitoring and optimization of the production process extremely difficult. Based on the state space model of batch process, the state estimation method can estimate the key variables accurately by filtering according to the statistical rule of detection value. In the actual production process, there are two kinds of detection values: the on-line detection value and the off-line detection value, the on-line detection value has no delay but the precision is low, the off-line detection value has the delay but the precision is high. On the other hand, the typical batch process has the characteristic of periodic batch production. Considering the existence of time-delay detection values and the characteristics of multiple batches, the research contents of state estimation for batch processes are as follows: (1) for the key variables in batch processes, the on-line detection accuracy is low, and the off-line detection delay is large. Based on Bayesian method, a state estimation method based on time-delay detection value information is proposed. In view of the different sampling periods of on-line and off-line detection values, only on-line detection values and two detection values coexist to analyze. This algorithm is based on particle filter algorithm and extends it based on Bayesian method to realize the information fusion of two detection values. The experimental results of digital simulation and biological hydrogen production process show that the proposed method can deal with the state estimation problem with time-delay detection value, and the effect is better than that without considering the time-delay detection value. (2) in view of the multi-batch characteristics of the batch process, Two dimensional state space models of time dimension and batch dimension are established, and a delay state estimation algorithm based on two dimensional state space model is proposed, considering the information of time delay detection value at the same time. Based on Bayesian method and forward / backward smoothing, the estimation effect is improved with the increase of batch dimension. The effect of state estimation with time delay detection value is better than that without time delay detection value. The simulation results in digital simulation and biological hydrogen production show that the algorithm is effective. (3) aiming at the problem that the two-dimension state space model is difficult to establish accurately, the multi-batch and repeated characteristics of batch process are combined. A delay state estimation algorithm based on iterative learning is proposed. According to the estimation state and the measurement model of the same sampling time in the previous batch, the algorithm estimates the expected detection value at that time, and the tracking error is obtained from the real detection value, and the estimation accuracy of the current batch is improved by iterating the error. Bayesian method and forward / backward smoothing are also used to fuse the time delay detection values. Finally, the effectiveness and practicability of the proposed method are verified by the digital simulation and the simulation application in the biological hydrogen production process.
【学位授予单位】:江南大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TN713

【参考文献】

相关期刊论文 前7条

1 邓冠龙;田广东;顾幸生;;零等待约束下多产品间歇过程的多目标调度[J];控制与决策;2017年03期

2 赵利强;王建林;于涛;陈坤云;刘唐江;;基于容积卡尔曼滤波和融合滞后量测的发酵过程非线性状态估计(英文)[J];Chinese Journal of Chemical Engineering;2015年11期

3 王立敏;周东华;朱城杰;;间歇过程复合迭代学习容错保性能控制器设计[J];上海交通大学学报;2015年06期

4 王法胜;鲁明羽;赵清杰;袁泽剑;;粒子滤波算法[J];计算机学报;2014年08期

5 杨国军;李秀喜;钱宇;;一种基于状态估计的间歇过程模型实时更新预测控制策略(英文)[J];Chinese Journal of Chemical Engineering;2014年03期

6 王建林;赵利强;于涛;;利用状态空间模型和不敏卡尔曼滤波的分批补料发酵过程在线估计(英文)[J];Chinese Journal of Chemical Engineering;2010年02期

7 贾立;施继平;邱铭森;;一类间歇生产过程的迭代学习控制算法及其收敛性分析[J];化工学报;2010年01期

相关博士学位论文 前1条

1 杨建文;金霉素发酵过程软测量建模及优化控制策略研究[D];北京理工大学;2015年

相关硕士学位论文 前7条

1 陈杏源;融合Camshift和粒子滤波算法的云台目标跟踪系统设计[D];华南理工大学;2016年

2 魏国华;粒子滤波算法研究与实现[D];电子科技大学;2015年

3 孙海乔;间歇过程的鲁棒迭代学习控制研究[D];江南大学;2014年

4 姜蕾蕾;啤酒发酵过程状态监测及控制策略的研究[D];哈尔滨理工大学;2014年

5 杨翔;间歇过程反应釜的软测量与迭代学习控制研究[D];南京理工大学;2012年

6 李慧娟;青霉素发酵过程建模与优化[D];东北大学;2010年

7 崔晓杰;维纳滤波的应用研究[D];长安大学;2006年



本文编号:2374229

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dianzigongchenglunwen/2374229.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户cc4a7***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com