基于箱粒子滤波的多目标跟踪算法研究
[Abstract]:Because of its wide application, target tracking has been paid more and more attention by experts and scholars. In the actual tracking scene, there is always more than one object of interest. With the appearance and disappearance of moving targets, the number of targets also changes in real time, and the corresponding multi-target tracking technology has made great progress. Box particle filter is a new generalized particle filter method proposed in recent years. It has the advantages of small number of particles, low computational complexity and high computational efficiency. On the basis of box particle filter, the multi-target tracking method is studied in this paper. The theoretical basis of box particle filter is introduced. Box particle filter is a generalized particle filter algorithm, which combines interval analysis, a mathematical tool, with the traditional Monte Carlo algorithm, and uses box particles instead of point particles with known maximum error. It is a method of dealing with imprecise measurement. Compared with the traditional particle filter algorithm, the box particle filter algorithm has a good performance. On the premise of keeping tracking accuracy, the number of particles used is less, the calculation amount of the algorithm is reduced, and the computation time is saved. The operation efficiency is greatly improved. On the basis of box particle and random set, a new multi-target tracking method, BP-CPHD (Particle potential probability assumption density filter), is proposed in this paper. The algorithm preserves the advantages of box particle filter and combines the advantages of CPHD filter. Compared with the traditional particle CPHD algorithm, it has low computational complexity and high computational efficiency. Compared with the probability assumption density (BP-PHD) algorithm based on box particle, it is not necessary to make the assumption that the distribution of target number accords with Poisson distribution, and the sensitivity of filter to clutter and miss detection is well solved. By recursive potential distribution of the number of targets, the deviation of the number of targets is estimated to be smaller, thus the tracking effect is improved. In the maneuvering target tracking problem, combining the (BPCPHD) algorithm based on the potential probability assumption density filter proposed by the box particle and the interactive multiple model algorithm, the paper proposes the box particle potential probability assumption density filter (IMM-BP-CPHD) based on the interactive multiple model. The algorithm not only inherits the advantages of the probability assumption density filter algorithm of box particle potential, but also can effectively track multiple maneuvering targets. The algorithm is compared with the interactive multi-model particle potential probability assumption density algorithm under interval measurement, which shows the advantages of the proposed algorithm, such as fast running speed and so on.
【学位授予单位】:西安电子科技大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TN713
【参考文献】
相关期刊论文 前10条
1 宋骊平;严超;姬红兵;梁萌;;基于箱粒子的多扩展目标PHD滤波[J];控制与决策;2015年10期
2 连峰;元向辉;陈辉;;基于势概率假设密度滤波器的不可分辨目标跟踪算法[J];系统工程与电子技术;2013年12期
3 王晓;韩崇昭;连峰;;基于随机有限集的目标跟踪方法研究及最新进展[J];工程数学学报;2012年04期
4 周卫东;张鹤冰;吉宇人;;基于SMC-CPHD的多目标跟踪算法研究[J];宇航学报;2012年04期
5 张俊根;姬红兵;蔡绍晓;;基于高斯粒子JPDA滤波的多目标跟踪算法[J];电子与信息学报;2010年11期
6 欧阳成;姬红兵;张俊根;;一种改进的CPHD多目标跟踪算法[J];电子与信息学报;2010年09期
7 刘伟峰;文成林;;随机集多目标跟踪性能评价指标比较与分析[J];光电工程;2010年09期
8 孙吉贵;刘杰;赵连宇;;聚类算法研究[J];软件学报;2008年01期
9 刘贵喜;高恩克;范春宇;;改进的交互式多模型粒子滤波跟踪算法[J];电子与信息学报;2007年12期
10 彭冬亮;文成林;徐晓滨;薛安克;;随机集理论及其在信息融合中的应用[J];电子与信息学报;2006年11期
相关博士学位论文 前1条
1 张鹤冰;概率假设密度滤波算法及其在多目标跟踪中的应用[D];哈尔滨工程大学;2012年
相关硕士学位论文 前2条
1 赵雪刚;箱粒子滤波及其在目标跟踪中的应用研究[D];西安电子科技大学;2014年
2 董祥磊;基于CPHD滤波的多目标跟踪方法研究[D];哈尔滨工业大学;2013年
,本文编号:2377686
本文链接:https://www.wllwen.com/kejilunwen/dianzigongchenglunwen/2377686.html