当前位置:主页 > 科技论文 > 电子信息论文 >

逼近积分点数下限的五阶容积卡尔曼滤波定轨算法

发布时间:2018-12-16 10:02
【摘要】:为了在保持滤波定轨精度不变的条件下提高定轨计算的实时性,提出一种新的逼近积分点个数下限的五阶容积卡尔曼滤波定轨算法.首先,采用一种数值容积准则对非线性函数的高斯加权积分进行近似,该准则所需的积分点个数仅比五阶代数精度容积准则积分点个数的理论下限多一个积分点,并在贝叶斯滤波算法框架下推导出本文算法的更新步骤.然后,给出实时定轨所需的状态方程和量测方程,在状态方程中考虑了J2项引力摄动和大气阻力摄动,在量测方程中利用坐标系转换推导了轨道状态与测量元素之间的非线性关系.仿真实验结果表明,本文所提算法在定轨精度方面与已有的五阶滤波算法相当,但所需的积分点个数最少,计算实时性最高,从而验证了本文算法的有效性.
[Abstract]:In order to improve the real-time performance of orbit determination under the condition of keeping the accuracy of orbit determination unchanged, a new fifth order volumetric Kalman filter orbit determination algorithm is proposed, which approximates the lower limit of the number of integral points. Firstly, a numerical volumetric criterion is used to approximate the Gao Si weighted integral of nonlinear function. The number of integral points required by this criterion is only one more than the theoretical lower limit of the number of integral points of the fifth order algebraic volumetric criterion. The update steps of this algorithm are deduced under the framework of Bayesian filtering algorithm. Then, the state equation and measurement equation for real time orbit determination are given. The J 2 term gravitational perturbation and atmospheric drag perturbation are considered in the state equation. The nonlinear relationship between the orbit state and the measuring elements is derived by means of coordinate system transformation in the measurement equation. The simulation results show that the proposed algorithm is equivalent to the existing five-order filtering algorithm in orbit determination accuracy, but the number of integral points is the least, and the real time calculation is the highest, which verifies the effectiveness of the proposed algorithm.
【作者单位】: 装备学院研究生院;装备学院光电装备系;
【基金】:国家高技术研究发展计划(批准号:2015AA7026085)资助的课题~~
【分类号】:TN713


本文编号:2382163

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dianzigongchenglunwen/2382163.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户e8941***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com