当前位置:主页 > 科技论文 > 电子信息论文 >

应变及掺杂对GaN及InN光电性质影响的第一性原理研究

发布时间:2019-01-19 12:43
【摘要】:以氮化镓及氮化铟为首的第三代半导体材料,由于具有高电子饱和速率、高电子迁移率、较小的有效电子质量、良好的导热性能以及稳定的物化性能,因此在高频、高功率的短波电子元器件制作上有着巨大的应用前景,被认为是21世纪最具发展空间的短波光电子器件材料。通过施加应变及掺杂等方式能改变GaN以及InN的能带结构,进而影响其电学和光学性质。尽管国内外在Be,Mg共掺对GaN光电性能的影响以及应变对In N,GaN光电性能影响的研究有一定的进展,但是研究过程中仍存在不足之处,还有待深入。本论文通过密度泛函理论(DFT)框架下的广义梯度近似(GGA)的方法,计算研究了Be,Mg掺杂对GaN体系的光电性能的影响。计算结果表明,当Be,Mg掺杂GaN的摩尔数为(0.02083-0.0625)范围内,随着Be,Mg掺杂浓度的增加,掺杂体系晶格常数增加,体积增加,总能量升高,稳定性下降,体系形成能增加,掺杂越困难;随着掺杂浓度的增加带隙变宽,吸收光谱发生蓝移,在掺杂浓度范围内,有效空穴质量随着掺杂浓度的增加,先减小后增大,迁移率增大,电导率随着浓度变化先增加后减小。使用第一性原理密度泛函理论(DFT)框架的广义梯度近似(GGA+U)的方法研究了应变对纤锌矿结构GaN的电子结构及光学性质的影响。结果显示,GaN晶格常数随拉应变增加而先减小后增加,随着压应变增加而减小。带隙值随拉应变增加而先增加后减小。随压应变增加带隙先增加后减小,在(1%-5%)应变范围内带隙成二次函数规律变化。吸收光谱与带隙宽度变化一致,在施加1%拉应变时发生蓝移,而继续增加应变吸收光谱红移。压应变下吸收光谱发生蓝移。使用模守恒广义梯度近似(GGA)计算了施加应变情况下InN的电子结构与光学性质。结果表明,应变导致带隙宽度变窄,且施加应变的程度与能带的变化呈线性关系。吸收光谱随着单轴压、拉应变以及双轴压应变发生红移,而双轴拉应变发生蓝移。其他光学性质如静态介电函、折射率、能量损失函数等在拉应变下变化显著,且单轴比双轴增加更明显。
[Abstract]:The third generation semiconductor materials, led by gallium nitride and indium nitride, have high electron saturation rate, high electron mobility, small effective electron mass, good thermal conductivity and stable physicochemical properties. High power short-wave electronic devices have a great application prospect, and are considered as the most promising materials for the development of short-wave optoelectronic devices in the 21st century. The band structure of GaN and InN can be changed by strain and doping, which will affect the electrical and optical properties. Although there has been some progress in the study of the effect of Be,Mg co-doping on the photoelectric properties of GaN and the effect of strain on the photoelectric properties of In Ngan, there are still some deficiencies in the research process and need to be further explored. In this paper, the influence of Be,Mg doping on the optoelectronic properties of GaN system is calculated by using the generalized gradient approximation (GGA) method under the framework of density functional theory (DFT). The calculated results show that when the molar number of Be,Mg doped GaN is (0.02083-0.0625), with the increase of Be,Mg doping concentration, the lattice constant increases, the volume increases, the total energy increases, and the stability decreases with the increase of Be,Mg doping concentration. The formation energy of the system increases and the doping becomes more difficult. With the increase of doping concentration, the band gap becomes wider and the absorption spectrum is blue shifted. In the range of doping concentration, the effective hole mass decreases first and then increases, and the mobility increases with the increase of doping concentration, and the conductivity increases first and then decreases with the increase of concentration. The effect of strain on the electronic structure and optical properties of wurtzite structure GaN is studied by using the generalized gradient approximation (GGA U) method of the first-principles density functional theory (DFT) frame. The results show that the lattice constant of GaN decreases first and then increases with the increase of tensile strain, and decreases with the increase of compressive strain. The band gap value increases first and then decreases with the increase of tensile strain. With the increase of compressive strain, the band gap increases first and then decreases, and the band gap changes into quadratic function in the strain range of (1-5%). The absorption spectrum is consistent with the band gap width, and the blue shift occurs when 1% tensile strain is applied, while the red shift of the strain absorption spectrum continues to increase. Blue shift occurs in absorption spectra under compressive strain. The electronic structure and optical properties of InN under applied strain are calculated by using Modulus conserved generalized gradient approximation (GGA). The results show that the band gap width is narrowed due to strain, and the degree of strain applied is linearly related to the change of energy band. The absorption spectra show red shift with uniaxial compression, tensile strain and biaxial compression strain, and blue shift with biaxial tension strain. Other optical properties, such as static dielectric function, refractive index and energy loss function, change significantly under tensile strain, and the uniaxial increase is more obvious than that of biaxial.
【学位授予单位】:内蒙古工业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TN304;O469

【参考文献】

相关期刊论文 前8条

1 毋志民;王蒙;邓军权;;Mn掺杂GaN稀磁半导体的电磁特性研究[J];原子与分子物理学报;2015年01期

2 阮兴祥;张富春;张威虎;;应力条件下GaN电子结构及光学性质研究[J];激光与光电子学进展;2014年09期

3 纪延俊;杜玉杰;王美山;;Electronic structure and optical properties of Al and Mg co-doped GaN[J];Chinese Physics B;2013年11期

4 吴文涛;吴克琛;马祖驹;洒荣建;韦永勤;李巧红;;The First Principles Investigations of the Thermoelectric Properties of GaN with p-and n-Type Doping[J];结构化学;2012年11期

5 吴木生;徐波;刘刚;欧阳楚英;;应变对单层二硫化钼能带影响的第一性原理研究[J];物理学报;2012年22期

6 周卓帆;张继华;刘伟;杨传仁;陈宏伟;赵强;;双轴应变对纤锌矿GaN、AlN、InN及其合金电子有效质量的影响(英文)[J];固体电子学研究与进展;2012年04期

7 陆稳;雷天民;;纤锌矿GaN光电性质的第一性原理研究[J];电子科技;2009年05期

8 邢海英;范广涵;章勇;赵德刚;;第一性原理研究Mg,Si和Mn共掺GaN[J];物理学报;2009年01期

相关硕士学位论文 前2条

1 雷迅;纤锌矿GaN和BN电子能带结构和声子色散性质的第一性原理研究[D];内蒙古大学;2014年

2 杨琴;Cu掺杂GaN基稀磁半导体的第一性原理研究[D];华东师范大学;2011年



本文编号:2411390

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dianzigongchenglunwen/2411390.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户45aa4***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com