一种基于奇异值分解的SAW传感器频率估计算法
发布时间:2019-02-12 09:37
【摘要】:在声表面波(SAW)谐振式无线传感器的频率估计中,该文提出了一种奇异值分解(SVD)与快速傅里叶变换(FFT)相结合的频率估计算法。首先采用重复采样的方法对无线SAW谐振器回波信号进行提取,然后在FFT之前利用SVD法去除回波信号中的白噪声,最后通过高斯曲线拟合法对FFT算出的频率进行校正。运用该算法得到的频率均方误差为1.53×103,而直接用FFT算法均方误差为2.38×10~3,均方误差减小了55%。可见,利用该SVD与FFT相结合的频率估计算法在准确度、稳定性方面都有很大改善,且该算法操作简单,易于实现。
[Abstract]:In the frequency estimation of saw (SAW) resonant wireless sensor, a frequency estimation algorithm combining singular value decomposition (SVD) (SVD) with Fast Fourier transform (FFT) is proposed. Firstly, the echo signal of wireless SAW resonator is extracted by repeated sampling method, then the white noise in the echo signal is removed by SVD method before FFT, and the frequency calculated by FFT is corrected by Gao Si curve fitting method. The frequency mean square error obtained by this algorithm is 1.53 脳 10 ~ 3, while the mean square error of FFT algorithm is 2.38 脳 10 ~ (-3), and the mean square error is reduced by 55%. It can be seen that the frequency estimation algorithm using the combination of SVD and FFT has great improvement in accuracy and stability, and the algorithm is simple and easy to implement.
【作者单位】: 北京理工大学光电学院;中国科学院声学研究所;
【基金】:国家重点研发基金资助项目(No.2016YFB0402705) 青岛橡胶行业智库联合基金资助项目(EVE-KJ-ZK-005) 国家自然科学基金资助项目(11304346)
【分类号】:TN65;TP212
[Abstract]:In the frequency estimation of saw (SAW) resonant wireless sensor, a frequency estimation algorithm combining singular value decomposition (SVD) (SVD) with Fast Fourier transform (FFT) is proposed. Firstly, the echo signal of wireless SAW resonator is extracted by repeated sampling method, then the white noise in the echo signal is removed by SVD method before FFT, and the frequency calculated by FFT is corrected by Gao Si curve fitting method. The frequency mean square error obtained by this algorithm is 1.53 脳 10 ~ 3, while the mean square error of FFT algorithm is 2.38 脳 10 ~ (-3), and the mean square error is reduced by 55%. It can be seen that the frequency estimation algorithm using the combination of SVD and FFT has great improvement in accuracy and stability, and the algorithm is simple and easy to implement.
【作者单位】: 北京理工大学光电学院;中国科学院声学研究所;
【基金】:国家重点研发基金资助项目(No.2016YFB0402705) 青岛橡胶行业智库联合基金资助项目(EVE-KJ-ZK-005) 国家自然科学基金资助项目(11304346)
【分类号】:TN65;TP212
【参考文献】
相关期刊论文 前3条
1 傅洋;韩韬;刘伯权;;谐振式SAW无线传感系统的测量不确定度分析[J];压电与声光;2014年05期
2 汤海;;基于改进Hilbert变换的电力信号频率测量方法[J];电子元器件应用;2010年09期
3 胡卫红;舒泓;栾宇光;;基于奇异值分解的电能质量信号去噪[J];电力系统保护与控制;2010年02期
相关硕士学位论文 前2条
1 郭霄鹏;应用于燃气管道的声表面波应变传感器的研究[D];北京理工大学;2016年
2 傅洋;声表面波无线无源温度传感系统的优化设计[D];上海交通大学;2014年
【共引文献】
相关期刊论文 前10条
1 肖学蕊;李红浪;陈淑芬;蔡飞达;柯亚兵;田亚会;邹正峰;;一种基于奇异值分解的SAW传感器频率估计算法[J];压电与声光;2017年04期
2 于萍;金炜东;陈春利;;基于奇异谱相对熵与灰色绝对关联度的监测数据特征分析[J];噪声与振动控制;2017年03期
3 唐振东;杨洪耕;;基于奇异值分解法的多逆变器并网控制系统交互影响研究[J];现代电力;2017年03期
4 王燕;李群湛;高洁;;电能质量扰动信号的自适应去噪方法[J];电力系统自动化;2016年23期
5 刘理云;曾U喺,
本文编号:2420313
本文链接:https://www.wllwen.com/kejilunwen/dianzigongchenglunwen/2420313.html