铟镓锌氧化物半导体材料的研究与仿真
[Abstract]:As an indium gallium zinc oxide semiconductor with a history of only more than ten years, the conductive mechanism of indium gallium zinc oxide semiconductor has not yet been determined. However, it is certain that the density of states of indium gallium zinc oxide is an important characterization of its electrical properties. In the existing literature, the research on the density of states model of indium gallium zinc oxide semiconductor is mainly focused on the extraction of some specific models or model parameters. In this paper, the main current state density model of indium gallium zinc oxide semiconductor is combined, and the related materials and devices are modeled and simulated by using computer simulation software. The influence of each model parameter on the device characteristics and the interaction between the model parameters are studied in detail. In this paper, the influence of state density model parameters on the characteristics of the device is also shown intuitively by extracting the charge distribution curve of trap capture in the band gap of the device. On this basis, the capture charge distribution curve is extracted by using different gate bias voltage, and the influence of state density model parameters on the device is amplified. After a series of simulation analysis, the influence of the parameters of each state density model on the device characteristics is qualitatively given, and the causes are analyzed in detail. The simulation results show that the drain current and threshold voltage of indium gallium zinc oxide semiconductor state density model mainly affect the drain current and threshold voltage of indium gallium zinc oxide semiconductor. when the density of host state increases, the drain current of indium gallium zinc oxide semiconductor decreases and the threshold voltage increases. The donor part mainly affects the subthreshold characteristics of the device, depending on its position in the band gap. When the donor state density near the Fermi energy level increases, the subthreshold swing of the device increases, and when the donor state density above the Fermi energy level increases, The threshold voltage of the device is reduced. In addition, when the donor density distribution center moves from the conduction band to the valence band, the drain current and threshold voltage of the device decrease. For different manufacturing processes, the properties of indium gallium zinc oxide semiconductors are different, so these results provide guidance for the future material definition in the simulation of indium gallium zinc oxide semiconductor devices with specific manufacturing processes. At the same time, the simulation of indium gallium zinc oxide semiconductor flexible device and its lighting characteristics are also discussed in this paper. The simulation results of the former show that there is no difference in device characteristics between planar devices and curved devices, but this result is obtained in the absence of stress model. It can not be used as a proof of the applicability of indium gallium zinc oxide semiconductors in flexible devices. In the latter simulation, we observe the effect of light on indium gallium zinc oxide semiconductor devices, but the effect is similar to that of hydrogenated amorphous silicon in the absence of relevant simulation models. That is, light only increases the turn-off current of the device, but lacks its unique effect on the threshold voltage of indium gallium zinc oxide semiconductor devices.
【学位授予单位】:电子科技大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TN304.2
【相似文献】
相关期刊论文 前10条
1 姚建年;氧化物半导体薄膜的光电效应及其应用[J];感光科学与光化学;1997年04期
2 丁海东;氧化物半导体甲烷敏感元件研究进展[J];传感器世界;2005年06期
3 姚建年;过渡会属氧化物半导体薄膜的光电化学研究及其应用[J];世界科技研究与发展;1998年06期
4 马格林,曹全喜,黄云霞;红外和雷达复合隐身材料——掺杂氧化物半导体[J];红外技术;2003年04期
5 李春鸿,姜克斌;真空热处理对氧化物半导体薄膜电阻的影响[J];半导体技术;1983年03期
6 蒋朝伦,陶明德;多晶氧化物半导体中晶界对电导的影响[J];电子元件与材料;2003年06期
7 古彦飞;季惠明;张颖;;氧化物半导体丙酮气敏传感器材料研究与应用[J];材料导报;2004年08期
8 范志新,孙以材,陈玖琳;氧化物半导体透明导电薄膜的最佳掺杂含量理论计算[J];半导体学报;2001年11期
9 贺少敏;;浅析新型氧化物半导体光电极的合成[J];计算机光盘软件与应用;2013年15期
10 张新安;张景文;张伟风;侯洵;;氧化物半导体薄膜晶体管的研究进展[J];现代显示;2009年04期
相关会议论文 前5条
1 黄延伟;程寅;李桂峰;张群;;p型掺锂氧化镍透明氧化物半导体薄膜的制备及性能研究[A];TFC’09全国薄膜技术学术研讨会论文摘要集[C];2009年
2 陈军;邓少芝;佘峻聪;许宁生;;若干种氧化物半导体纳米线的制备及其应用的研究[A];中国真空学会2008年学术年会论文摘要集[C];2008年
3 李喜峰;王颖华;李桂锋;张群;黄丽;章壮健;;渠道火花烧蚀法制备p型透明氧化物半导体薄膜[A];中国真空学会2006年学术会议论文摘要集[C];2006年
4 杜祖亮;;基于1D氧化物半导体的光电纳米器件[A];中国化学会第28届学术年会第4分会场摘要集[C];2012年
5 杨铭;施展;张群;;P型导电Ni_(0.9)Cu_(0.1)O透明氧化物半导体薄膜的研究[A];TFC’09全国薄膜技术学术研讨会论文摘要集[C];2009年
相关博士学位论文 前3条
1 赵靖;介孔氧化物半导体的制备及其化学传感特性的研究[D];吉林大学;2013年
2 赵倩;TiO_2基氧化物半导体磁性的实验研究[D];天津大学;2009年
3 王书杰;氧化物半导体纳米结构的制备及其光电性能研究[D];河南大学;2009年
相关硕士学位论文 前9条
1 赵学平;p型铜铁矿结构透明氧化物半导体的制备与性能研究[D];北京工业大学;2009年
2 钟焕周;P型铜铁矿结构掺杂氧化物半导体CuAlO_2的制备及性能研究[D];广东工业大学;2012年
3 贾红;氧化物半导体的湿化学法制备[D];浙江理工大学;2010年
4 万逸群;铟镓锌氧化物半导体材料的研究与仿真[D];电子科技大学;2015年
5 张庆;氧化物半导体微结构调控及性能研究[D];齐鲁工业大学;2015年
6 施展;p型Cu_(1-x)Ni_xO透明氧化物半导体薄膜的制备及性能分析[D];复旦大学;2009年
7 麦海翔;稀土Eu、Nd、Y掺杂氧化物半导体CuAlO_2的制备及性能研究[D];广东工业大学;2015年
8 宋晓英;P型铜铁矿结构氧化物半导体CuCrO_2的掺杂效应及性能研究[D];广东工业大学;2013年
9 王诗琪;In_2O_3稀磁氧化物半导体的局域结构与磁、输运性能[D];天津理工大学;2014年
,本文编号:2483161
本文链接:https://www.wllwen.com/kejilunwen/dianzigongchenglunwen/2483161.html