当前位置:主页 > 科技论文 > 电子信息论文 >

微波脉冲对低噪声放大器的效应研究

发布时间:2019-07-05 18:52
【摘要】:高功率微波的输出功率达到GW甚至十GW水平,已经成为电子系统的重要威胁。低噪声放大器作为射频前端的核心器件以及最脆弱的器件,极易被邻近微波发射源的微波脉冲干扰甚至损伤。为了获得微波脉冲参数对电子系统作用效果的影响规律,以及寻找增强半导体器件微波防护能力的方法,论文利用理论分析、仿真分析、注入实验以及失效分析方法开展了微波脉冲对双极型晶体管(BJT)型和赝配高电子迁移率晶体管(PHEMT)型低噪声放大器的效应研究。研究了微波脉冲作用下器件的非线性特性和损伤特性,同时分析了脉冲参数以及器件工作状态对器件损伤功率的影响规律。论文的主要内容及结论如下:1、利用理论分析和仿真分析研究了微波脉冲作用低噪声放大器的效应机理。通过建立频率对半导体器件热效应影响的理论模型,分析得到低频时器件更容易损伤。通过建立微波脉冲作用BJT和PHEMT的仿真模型,研究了微波脉冲作用下半导体器件的非线性效应机理和损伤效应机理。微波脉冲从基极注入时BJT集电极输出电流随基极注入电压的增加呈现出线性增加、饱和、减小、最后反向且再增加的特性;BJT发射结附近的基区以及基极电极和发射极电极为器件的易损部位。微波脉冲从栅极注入时PHEMT漏极输出电流随栅极注入电压的增加呈现出线性增加、饱和、最后反向且再增加的特性;PHEMT栅极下方靠源极侧以及栅极电极和源极电极为器件的易损部位。同时获得了微波脉冲频率、脉宽以及器件偏压对半导体器件损伤效应的影响规律。2、开展了微波脉冲对BJT型和PHEMT型低噪声放大器的注入实验,研究了微波脉冲作用低噪声放大器的非线性效应特性和损伤效应规律。实验测量得到的低噪声放大器输出波形随注入功率增加的变化特性与仿真结果相符。获得了不同脉冲参数(包括脉宽、频率和脉冲个数)以及器件不同工作状态对低噪声放大器损伤功率的影响规律,同时分析了低噪声放大器损伤时的典型波形。低噪声放大器的损伤功率随脉宽增加的变化分为两段:第一段,脉宽20 ns~100 ns,损伤功率与脉宽关系为P∝t-1;第二段,脉宽100 ns~2000 ns,P∝t-1/2。频率为1.5 GHz~10 GHz范围内,器件损伤功率随频率增加呈现出先增加后减小的趋势,器件最大损伤功率的频率点在6 GHz附近,与微波脉冲作用BJT的三维仿真结果相符。BJT型低噪声放大器的损伤功率随脉冲个数增加基本不变;在脉冲个数小于100个时,脉冲个数越多损伤PHEMT型低噪声放大器所需的功率越小。低噪声放大器不同偏压条件下的损伤功率一样,器件损伤的能量来自微波脉冲。大信号作用下,低噪声放大器输出信号的倍频分量显著增大,器件损伤时晶体管输入阻抗发生突变,导致阻抗失配,使得反射信号突然增大,而输出信号突然减小。3、对比分析了半导体器件损伤前后的电特性。BJT损伤后各电极间电阻值正偏和反偏时一样,且明显减小,基极-发射极电阻减小的幅度最大;晶体管PN结的击穿电压都趋于零,且不再具有PN结特性。BJT损伤后发射结和集电结击穿,形成了具有较小电阻值的短路路径,导致晶体管出现永久性的功能丧失。PHEMT损伤后栅极-源极和栅极-漏极的电阻值正偏和反偏时一样,且明显减小;同时,晶体管饱和漏电流和栅极泄露电流显著增大,输出特性曲线表现为电阻特性,栅极失去了对漏极电流的控制能力。PHEMT损伤后肖特基结击穿,形成了具有较小电阻值的短路路径。4、分析了不同损伤条件下半导体器件的微观损伤形貌。微波脉冲从基极注入BJT时,基极电极的输入端和其下方基区的Si材料为器件的易损部位,与仿真得到的晶体管易损部位相符。不同注入条件下,BJT的损伤程度存在明显差异。多个脉冲注入时BJT基极电极被烧断,而单个脉冲注入时基极电极只是被烧熔,多个脉冲注入时的损伤程度更严重。单个脉冲注入时,脉宽越长,BJT的损伤现象越容易被观测到,且损伤区域的面积越大。微波脉冲从PHEMT的栅极注入时,PHEMT的栅极条以及栅极条的周围区域为晶体管的易损部位,与仿真得到的晶体管易损部位相符。不同注入条件下,PHEMT的损伤图像没有明显差异。5、统计分析了两种型号被微波脉冲损伤的GaAs PHEMT单片微波集成电路(MMIC)芯片的损伤模式。结果表明,不同型号的MMIC芯片损伤位置存在明显差异。MMIC芯片的有源结构和无源器件都有可能出现损伤。有源结构出现损伤的概率更大,无源器件中平面螺旋电感为易损部位。
[Abstract]:The output power of high-power microwave reaches the level of GW or even 10 GW, which has become an important threat to the electronic system. The low-noise amplifier, as the core device of the RF front-end and the most vulnerable device, is highly susceptible to microwave pulse interference and even damage to the microwave-emitting source. in order to obtain the influence of the microwave pulse parameters on the effect of the electronic system, and to find a method for enhancing the microwave protection capability of the semiconductor device, the paper makes use of the theoretical analysis, the simulation analysis, The effect of microwave pulse on bipolar transistor (BJT) type and high electron mobility transistor (PHEMT) type low noise amplifier was studied by injection experiment and failure analysis method. The nonlinear characteristic and the damage characteristic of the device under the action of microwave pulse are studied, and the influence of the pulse parameters and the working state of the device on the damage power of the device is also analyzed. The main contents and conclusions of the paper are as follows:1. The effect mechanism of the microwave pulse action low noise amplifier is studied by means of theoretical analysis and simulation analysis. By establishing a theoretical model of the effect of frequency on the thermal effect of the semiconductor device, the device is more likely to be damaged when the low frequency is obtained. The nonlinear effect mechanism and the damage effect mechanism of the semiconductor device under the action of microwave pulse are studied by establishing a simulation model of the BJT and PHEMT under the action of microwave. When the microwave pulse is injected from the base, the increase of the output current of the BJT collector with the base injection voltage exhibits a linear increase, a saturation, a reduction, a last reverse and an additional characteristic, and the base region and the base electrode and the emitter electrode in the vicinity of the BJT emitter junction are the vulnerable parts of the device. The increase of the drain output current of the phemt when the microwave pulse is injected from the gate shows a linear increase, a saturation, a last reverse and a re-increased characteristic with the increase of the gate injection voltage; the source side and the gate electrode and the source electrode below the phemt gate are the vulnerable parts of the device. The effect of microwave pulse frequency, pulse width and device bias on the damage of semiconductor device was also obtained. The nonlinear effect and the damage effect of the low noise amplifier with microwave pulse are studied. The output waveform of the low-noise amplifier obtained by the experiment is matched with the simulation result with the increase of the injection power. The influence of different pulse parameters (including pulse width, frequency and number of pulses) and different working conditions of the device on the damage power of the low-noise amplifier is obtained, and the typical waveform of the low-noise amplifier is analyzed. The damage power of the low-noise amplifier is divided into two sections with the increase of the pulse width: the first section, the pulse width of 20 ns-100 ns, the damage power and the pulse width are P-type-1, the second section, the pulse width is 100 ns-2000 ns, and the P-type-1/2. The frequency of the device is in the range of 1.5 GHz to 10 GHz, the damage power of the device increases with the increase of the frequency, and the frequency point of the maximum damage power of the device is in the vicinity of 6 GHz, and is in accordance with the three-dimensional simulation result of the microwave pulse effect BJT. The damage power of the BJT-type low-noise amplifier increases with the number of pulses, and the smaller the number of pulses, the more the number of pulses, the smaller the power required to damage the PHEMT-type low-noise amplifier. As with the damage power of the low noise amplifier under different bias conditions, the energy of the device damage comes from the microwave pulse. Under the action of a large signal, the frequency-doubling component of the output signal of the low-noise amplifier is obviously increased, the input impedance of the transistor is abruptly changed when the device is damaged, the impedance mismatch is caused, the reflection signal is suddenly increased, and the output signal is suddenly reduced. The electrical characteristics before and after the damage of the semiconductor device were compared. After BJT is damaged, the resistance value of each electrode is the same as in the case of anti-bias, and is obviously reduced, and the base-emitter resistance is reduced to the maximum; the breakdown voltage of the transistor PN junction tends to be zero, and the PN junction characteristic is no longer present. The breakdown of the emitter junction and the collector junction after the BJT damage forms a short-circuit path with a small resistance value, leading to a permanent loss of function of the transistor. When PHEMT is damaged, the resistance of gate-source and gate-drain is the same as in the case of anti-bias, and is obviously reduced; at the same time, the leakage current of the transistor and the leakage current of the gate are significantly increased, and the output characteristic curve is shown as the resistance characteristic, and the gate has lost control of the drain current. The Schottky junction breakdown after the PHEMT injury resulted in a short circuit with a small resistance value.4. The micro-damage morphology of the semiconductor device under different damage conditions was analyzed. When the microwave pulse is injected from the base into the BJT, the input end of the base electrode and the Si material of the base region below the base electrode are the vulnerable parts of the device, and are matched with the vulnerable parts of the transistor obtained by the simulation. There is a significant difference in the degree of damage of BJT under different injection conditions. The BJT base electrode is blown when a plurality of pulses are injected, and the base electrode is only fused at the time of a single pulse injection, and the degree of damage at the time of multiple pulse injection is more severe. As a single pulse is injected, the longer the pulse width, the more easily the BJT's damage is observed, and the larger the area of the damage area. When the microwave pulse is injected from the gate of the PHEMT, the gate strip of the PHEMT and the peripheral area of the grid strip are the vulnerable parts of the transistor, and are matched with the vulnerable parts of the transistor obtained by the simulation. The damage images of the PHEMT were not significantly different under different injection conditions.5, the damage mode of the GaAs PHEMT single-chip microwave integrated circuit (MMIC) chip which was damaged by the microwave pulse was analyzed. The results show that there is a significant difference in the location of MMIC chip in different models. The active structure and the passive device of the mmic chip are likely to be damaged. The probability of damage to the active structure is larger, and the plane spiral inductor in the passive device is a vulnerable part.
【学位授予单位】:国防科学技术大学
【学位级别】:博士
【学位授予年份】:2015
【分类号】:TN722.3

【相似文献】

相关期刊论文 前10条

1 彭龙新,蒋幼泉,林金庭,魏同立;全单片高增益低噪声放大器[J];固体电子学研究与进展;2001年04期

2 ;高频低噪声放大器[J];国外电子元器件;2001年01期

3 安毅,吕昕,高本庆;振幅比较单脉冲系统中前端低噪声放大器的选择[J];雷达与对抗;2001年01期

4 曹克,杨华中,汪蕙;低电压低功耗CMOS射频低噪声放大器的研究进展[J];微电子学;2003年04期

5 一凡;全波段毫米波低噪声放大器[J];微电子技术;2003年03期

6 张广,郑武团,田海林;低噪声放大器的网络设计法[J];现代电子技术;2004年01期

7 ;安捷伦科技推出具关断功能的超低噪声放大器模块[J];电子与电脑;2005年11期

8 张红南;黄雅攸;蒋超;颜永红;;高增益低功耗CMOS低噪声放大器的设计[J];微计算机信息;2008年29期

9 刘峻;卢剑;李新;郭宇;苏建华;梁洁;;一种低噪声放大器的白噪声分析[J];中国集成电路;2009年08期

10 周伟中;;低噪声放大器的仿真设计[J];科技资讯;2010年14期

相关会议论文 前10条

1 张乾本;;45°K超低噪声放大器[A];1993年全国微波会议论文集(下册)[C];1993年

2 高飞;张晓平;郜龙马;朱美红;曹必松;高葆新;;低温低噪声放大器特性研究[A];2003'全国微波毫米波会议论文集[C];2003年

3 郑磊;胡皓全;田立卿;;低噪声放大器的设计[A];2005'全国微波毫米波会议论文集(第三册)[C];2006年

4 郭伟;鲍景富;;低噪声放大器稳定性分析与设计方法[A];2005'全国微波毫米波会议论文集(第二册)[C];2006年

5 贺菁;董宇亮;徐军;李桂萍;;5mm宽带低噪声放大器的研制[A];2007年全国微波毫米波会议论文集(上册)[C];2007年

6 刘畅;梁晓新;阎跃鹏;;射频宽带低噪声放大器设计[A];2009安捷伦科技节论文集[C];2009年

7 王云峰;李磊;梁远军;朱文龙;;双平衡支路低噪声放大器的设计与测试[A];2009安捷伦科技节论文集[C];2009年

8 刘宝宏;陈东坡;毛军发;;一种采用正体偏置和增益增强技术的低电压低功耗低噪声放大器[A];2009年全国微波毫米波会议论文集(下册)[C];2009年

9 张利飞;汪海勇;;低噪声放大器的仿真设计[A];2009年全国微波毫米波会议论文集(下册)[C];2009年

10 王汉华;胡先进;;卫星电视低噪声放大器的设计[A];1997年全国微波会议论文集(上册)[C];1997年

相关重要报纸文章 前1条

1 四川 张达 编译;增益从1到1000倍可变的高精度低噪声放大器[N];电子报;2004年

相关博士学位论文 前10条

1 井凯;SiGe HBT低噪声放大器的研究[D];西安电子科技大学;2016年

2 张存波;微波脉冲对低噪声放大器的效应研究[D];国防科学技术大学;2015年

3 曹克;低电压低功耗CMOS射频低噪声放大器设计[D];清华大学;2005年

4 刘宝宏;CMOS工艺的低电压低噪声放大器研究[D];上海交通大学;2011年

5 黄煜梅;CMOS蓝牙收发器中低噪声放大器的设计及高频噪声研究[D];复旦大学;2004年

6 许永生;CMOS射频器件建模及低噪声放大器的设计研究[D];华东师范大学;2006年

7 李琨;低噪声放大器动态范围扩展的理论和方法研究[D];天津大学;2010年

8 王军;低噪声放大器模块化分析与设计的等效噪声模型法的研究[D];电子科技大学;1999年

9 黄东;面向多带多标准接收机的宽带CMOS低噪声放大器研究[D];中国科学技术大学;2015年

10 彭洋洋;微波/毫米波单片集成收发机中关键电路的设计及其小型化[D];浙江大学;2012年

相关硕士学位论文 前10条

1 张全;宇航用低噪声放大器研制及其可靠性研究[D];西安电子科技大学;2012年

2 冯永革;低噪声放大器的研究与设计[D];南京理工大学;2015年

3 易凯;CMOS毫米波低噪声放大器设计[D];电子科技大学;2014年

4 赖宏南;超宽带大动态自动电平控制系统研究[D];电子科技大学;2014年

5 李佩;微波单片专用集成电路设计[D];电子科技大学;2009年

6 王轲;微波宽带低噪声放大器研究[D];电子科技大学;2015年

7 李凯;平衡式低噪声放大器设计[D];电子科技大学;2015年

8 赵艳阳;X波段限幅低噪声放大器设计与实现[D];电子科技大学;2014年

9 李辛琦;1.2GHz CMOS低噪声放大器的仿真设计与实现[D];电子科技大学;2015年

10 孙海昕;基于CMOS工艺的射频低噪声放大器的设计[D];黑龙江大学;2015年



本文编号:2510738

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dianzigongchenglunwen/2510738.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户e7323***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com