未知杂波状态下基于箱粒子滤波的PHD算法
发布时间:2019-11-04 02:47
【摘要】:针对未知杂波环境中,传统的多目标概率假设密度(PHD)滤波器跟踪精度无法保证,所需粒子支撑集过大导致效率低下的问题,引入了区间分析技术,提出了未知杂波状态下基于箱粒子滤波的PHD算法。该算法首先完成对雷达目标和杂波的混合空间随机有限集模型的构建,然后基于箱粒子滤波技术,利用量测数据建立未知杂波模型,推导出目标状态更新方程,并用多目标箱粒子PHD滤波递推地估计目标状态。仿真实验表明,当杂波环境与先验模型不匹配时,相较于多目标粒子滤波算法,该算法在保证目标跟踪性能的同时,有效减少了算法的计算时间。
本文编号:2555427
【相似文献】
相关期刊论文 前2条
1 辛云宏,杨万海;杂波环境下IRST系统的单站机动目标跟踪算法研究[J];系统工程与电子技术;2005年07期
2 ;[J];;年期
相关硕士学位论文 前1条
1 江舟;未知杂波环境下的概率假设密度滤波器研究[D];西安电子科技大学;2014年
,本文编号:2555427
本文链接:https://www.wllwen.com/kejilunwen/dianzigongchenglunwen/2555427.html