【摘要】:脊髓损伤(Spinal Cord Injury,SCI)导致损伤部位以下的运动和感觉功能的丧失,因而也经常导致膀胱功能部分或完全的丧失。SCI患者往往同时面临着膀胱贮尿和排尿双重功能障碍,如果不及时治疗最终可能导致肾衰竭,这也是导致SCI患者后期死亡的第一位原因。SCI后膀胱功能障碍的患者数目众多、发病率高,严重影响患者的生活质量、心理和社会交往,对患者家庭和社会造成沉重的经济负担。因此,恢复与重建SCI患者的膀胱功能,对于提高这些患者的生活质量、降低死亡率具有十分重要意义。胃食管反流病(Gastro-esophageal Reflux Disease,GERD)被定义为胃内容物反流入食管,导致一系列的不适症状和(或)并发症的一种疾病。GERD是全世界最常见的消化道疾病之一,而且在人群中发病率高。据统计,全世界范围内,大约有2.5亿个GERD患者。GERD不仅严重影响患者的生活质量,还造成了沉重的经济和社会负担,其治疗方法也成为了全世界关注和研究的热点。基于课题组前期实行的“先外周后中枢”和“先体外后体内”研究路线,目前肌电桥(EMGB)系统(“体外”)已进入临床认证阶段,所以在前期的工作基础上,本文主要围绕应用于SCI后膀胱功能重建和治疗GERD相关的植入式(“体内”)神经肌肉电刺激电子系统设计以及实验开展研究。主要研究内容如下:1)电极配置选择和刺激波形参数优化实验研究。通过实验探索合适的电极配置和刺激参数,旨在不改变系统的软硬件设计的前提下,进一步地提高刺激器的性能。为此,本文讨论不同电极配置、不同脉宽比和不同IPG(Interphase Gap)对神经电刺激的影响,为植入NMES系统电路系统设计提供实验指导。2)用于膀胱功能控制的神经刺激器电路设计。采用集成电路设计的方法设计刺激器,能够产生满足治疗SCI后膀胱功能障碍的刺激脉冲。刺激器电路设计主要包括DAC、电流驱动电路和开关网络电路。3)用于膀胱功能重建的神经信号探测前端电路设计。采用集成电路设计的方法设计神经信号探测前端电路,用于骶神经神经信号探测,识别膀胱状态信息。探测前端电路设计主要包括OTA设计和反馈伪电阻设计。另外,从理论上分析神经探测前端的噪声。4)体内无源型食管下括约肌电刺激系统设计和实验研究。基于信号无线跨皮传输技术,设计用于治疗GERD的体内无源型食管下括约肌电刺激系统。然后,利用生物相容性材料对系统的体内部分进行封装,并对封装后系统的信号特性和位置失匹配进行测试。最后,利用所设计的系统进行LES电刺激实验和体内植入实验,验证系统的安全性和有效性。本文所涉及的创新点如下:1)研究不同电极配置、不同脉宽比和不同IPG对神经电刺激的影响,得出以下结论:纵向三极电极配置所需的刺激阈值电流最低,这一点对植入式刺激器的低功耗设计非常有利;横向电极配置的选择性比纵向配置的好,因为横向电极配置拥有较大的动态范围可供调节。从肌肉力量精细控制角度考虑,横向电极配置更适合。脉宽比为1:6的非对称双相电荷平衡脉冲很好地结合单相脉冲阈值低和双相脉冲电荷平衡二者的优点。为了使随后的阳极相不影响阴极相所引起的动作电位的传播,需要在两个刺激相间加个IPG,实验得到阴极脉宽为50μs时最佳的IPG为300μs,因为此时具有较低的阈值,同时还获得较大的最大EMG响应幅度和最大的动态范围。这些结论为植入NMES系统电路系统设计提供了实验指导。2)刺激器一方面采用电流型DAC和电流驱动直接实现电流模式刺激,不需要电压-电流转换电路,显著地降低了刺激器的功耗;另一方面采用同一个电流源和一个开关网络来实现双相刺激电流脉冲,消除了用两个独立电流源分别生成阴极和阳极电流,节省了芯片面积且减少了控制信号互连线。另外,采用对称可调的共源共栅电流镜作为电流驱动电路。该方法结合了压控电阻技术和电流镜的线性两者的优点,能够获得高的电压容限和高的输出阻抗,确保有效地发送电荷到生物组织上。3)神经探测前端电路采用了两级全差分电容岕合的运放结构。全差分结构具有高的共模抑制比和高的电源抑制比,能够抑制共模噪声和源自电源纹波和数字电路干扰。采用两级信号放大是为了获得足够大的增益,且保证良好的线性度。采用电容耦合放大器结构是了隔断电极-组织接口电化学反应引起的直流偏移。第一级采用套筒式共源共栅结构运放降低系统的噪声,而第二级采用折叠共源共栅结构优化摆幅。与先前研究相比,该神经信号探测前端电路具有低噪声、低功耗等优点。4)设计了一种体内无源型食管括约肌电刺激系统。该系统采用信号无线跨皮传输技术,刺激信号是通过体外发射电路经线圈耦合的方式传输到体内,具有电路结构简单、系统可靠性好、体积小、寿命长和成本低的特点。体内设计成无源的结构,解决了传统植入式器件电池供电所带来的问题。另外,医生可依据患者的情况,通过无线程序控制及时有效地调整刺激参数,以便对不同患者进行个性化的治疗。
【图文】: .2神经肌肉电刺激逡逑2.1神经肌肉电刺激的工作原理逡逑神经肌肉电刺激(Neuromuscular邋Electrical邋Stimulation,,邋NMES)的基本原理是的方式发送一定电荷到目标神经组织产生动作电位,诱发恰当的神经或肌肉响应,达到恢复希望的功能目的[19]。几十年来,通过工程师和医生不懈协同地努力,NM
1.2.2.2经皮NMES系统逡逑经皮NMES系统通过手术将电极植入目标神经肌肉,然后通过经过皮肤的连接线与逡逑外部刺激器相连。图1-5给出了邋Chae等人设计的用于脑卒中偏瘫患者的经皮手神经假逡逑体系统[3G]。该系统的刺激器通过经皮导线直接与多个肌内电极连接,其刺激强度受腕部逡逑角度传感器、肩部位置传感器和肌电(Electromyography,邋EMG)控制器三种方式控制,逡逑但每次只有一种控制方式有效。研究表明该系统有助于提高痉挛性偏瘫患者手部功能康逡逑复。逡逑外部连接器逡逑E邋M邋(3探测电极一—逦I逦肩部位置传感器逡逑腕部位置传感器.,逦i逡逑外部刺激器^^邋u逡逑图1-5用于脑卒中偏瘫患者的经皮式手神经假体系统示意图逡逑4逡逑
【学位授予单位】:东南大学
【学位级别】:博士
【学位授予年份】:2018
【分类号】:TN402;R651.2;R571
【参考文献】
相关期刊论文 前10条
1 王斌;张伟;刘晟;宋鑫;祝炜;江道振;仇明;;一种新型建立胃食管反流病的动物模型的方法:导尿管球囊扩张术[J];中华胃食管反流病电子杂志;2014年01期
2 Raul Badillo;Dawn Francis;;Diagnosis and treatment of gastroesophageal reflux disease[J];World Journal of Gastrointestinal Pharmacology and Therapeutics;2014年03期
3 孙书鹰;陈志佳;寇超;;新一代嵌入式微处理器STM32F103开发与应用[J];微计算机应用;2010年12期
4 周煜;于歆杰;程锦闽;王崇慧;王琳;;用于心脏起搏器的经皮能量传输系统[J];电工技术学报;2010年03期
5 Davide Festi;Eleonora Scaioli;Fabio Baldi;Amanda Vestito;Francesca Pasqui;Anna Rita Di Biase;Antonio Colecchia;;Body weight, lifestyle, dietary habits and gastroesophageal reflux disease[J];World Journal of Gastroenterology;2009年14期
6 刘宝华;孔令丰;郭兴明;;国内外现行电磁辐射防护标准介绍与比较[J];辐射防护;2008年01期
7 刘滨;刘静静;曹旭阳;;嵌入式图形接口μC/GUI在μC/OSⅡ上的移植[J];微计算机信息;2007年02期
8 李莹,刘学成;对我国电磁辐射防护标准的几点建议[J];中国辐射卫生;2005年02期
9 高攸纲 ,张苏慧;电磁环境对人体健康的危害效应和剂量学中存在的若干问题[J];安全与电磁兼容;2004年06期
10 王金武,侯春林,李继峰,陈爱民,张伟,王诗波;利用腹壁反射建立人工膀胱反射弧的辣根过氧化物酶逆行示踪研究[J];中华创伤骨科杂志;2004年04期
相关硕士学位论文 前1条
1 王淑红;应用于膀胱功能重建的多通道信号跨皮无线传输系统设计与实验研究[D];东南大学;2015年
本文编号:
2596442
本文链接:https://www.wllwen.com/kejilunwen/dianzigongchenglunwen/2596442.html