当前位置:主页 > 科技论文 > 电子信息论文 >

石墨烯及二维半导体异质光电器件研究

发布时间:2020-06-02 18:22
【摘要】:石墨烯是一种由单层碳原子构成的半金属,也是最具代表性的二维材料。在2004年石墨烯被制备以前,人类可以制备和利用三维、一维以及零维材料来构建各种功能的器件。然而二维材料的制备却迟迟未能取得突破,这是因为当时人们普遍认为石墨烯由于其晶格的不稳定性,在常温常压下无法稳定存在,故鲜有课题组有针对性地进行制备。石墨烯的发现,恰似是拼图的最后一片,打开了在全新维度框架下对物理、器件进行研究的大门。石墨烯的出现表明人们有可能在单原子层或多原子层的水平上构建器件,而这也代表了未来科学技术发展的方向。因此石墨烯一经面世,便在全世界范围内掀起了研究浪潮,进一步研究陆续发现了许多新型二维材料,特别是二维半导体如硅烯和过渡金属硫属化物,具有与块体半导体截然不同的性质。自石墨烯的发现者Andre Geim和Konstantin Novoselov摘得诺贝尔奖至今已九年,石墨烯被发现至今也已过了十五年,期间二维材料在物理方面的研究层出不穷,然而人们亟需探索其在实际生产生活中的可能应用。目前为止,国际上公认石墨烯与二维半导体在光电器件领域有独特的优势。以石墨烯为例,其透明度高、导电性好、载流子迁移率高,在电子器件或是光电器件方面有广阔应用前景。然而石墨烯及二维导半体在应用于光电器件时,存在诸如吸光率过低、器件无法关断等问题,而光电器件各领域在发展中又迫切需要对现有器件的性能进行提高。如何解决这些问题?石墨烯及二维导半体的异质结构会是一种行之有效的解决方法。同时石墨烯及二维半导体又可以直接与传统三维半导体复合,形成结区位于表面的异质结,从而极大拓展器件的应用范围。不同二维半导体之间也性质各异,可利用多种二维半导体构建光电器件,在不同二维半导体间取长补短,提高器件的性能。石墨烯及二维半导体与三维半导体之间形成的二维/三维异质结构具有独特的物理内涵和应用价值。以石墨烯/砷化镓异质结为例,从载流子动力学角度上看,石墨烯本身也具有超宽带光吸收及多激子效应,可参与到载流子产生的过程中,同时异质结中光生载流子可在飞秒量级内在石墨烯与砷化镓之间进行转移,可提高载流子的收集效率。从载流子空间分布角度上看,其耗尽层与光吸收层在空间上相重叠,减少了载流子在漂移及扩散运动过程中的损失,表助于载流子的可以高效产生及分离。这些特性二维/三维异质结构突破传统光电器件性能限制打下了物理基础。二维/三维异质结构其性能优化方法及效果也与传统PN结构大相径庭。以局域表面等离子体共振增强方法为例,由于表面等离子体共振产生的热点能量是近场分布,随距离增加迅速衰减,而传统PN结区位于器件表面以下数百纳米甚至数微米深度,表面等离子体共振难以对其增强。而二维/三维异质结构由于结构位于表面,其表面等离子体共振产生的增强电磁场与耗尽层及光吸收层在空间上相重叠,因此可大幅提高器件的性能。同时,可对二维/三维异质结构中的石墨烯及二维半导体进行诸如表面能带调节、化学掺杂及减反射层等增强手段。本论文围绕石墨烯及二维半导体的异质结构在光电器件领域的实际应用应用,综合研究了几种基于石墨烯及二维半导体的不同类型的光电器件,涉及石墨烯、二维六方氮化硼、二维二硫化钼,并介绍了通过界面能带调节、表面掺杂、局域表面等离子体共振增强等手段来提高器件性能的方法,探究了性能提升背后的物理机制,进一步提示了石墨烯及二维半导体的异质结构的物理内涵,具体内容有以下几部分:1)提出了石墨烯/六方氮化硼/氧化锌异质光电探测器,并研究六方氮化硼在异质结中起到的势垒提升作用。研究表明由于六方氮化硼的负电子亲和势和宽禁带宽度,可以提升石墨烯/氧化锌器件的电子势垒,提升器件在365nm紫外光响应度到1350 AW-1,同时将器件的开关比提升到103。2)利用湿法转移技术得到石墨烯/氮化镓发光二极管,正反向均可发光且波长不同,在界面处引入银纳米颗粒可提升其发光强度。通过对光谱进行拟合,我们认为银纳米颗粒的局域表面等离子体,可与氮化镓层中的激子复合发生能量耦合,提高辐射复合在载流子复合过程中的比例,从而提升二极管的发光强度。3)研究了金纳米颗粒增强的石墨烯/砷化镓太阳能电池,并获得了 16.2%的转换效率。通过在石墨烯/砷化镓太阳能电池表面旋涂一层化学合成的金纳米颗粒,可利用纳米颗粒的局域表面等离子体共振效应将入射光局域在石墨烯/砷化镓的表面耗尽层,从而加快光生载流子的分离,将太阳能电池的短路电流密度从19.1 mAcm-2提升至24.9 mA cm-2,结合掺杂和减反射手段,可将太阳能电池转换效率提升至16.2%。同时研究了金纳米颗粒的直径、分布密度对电池转换效率的影响。4)研究了金属纳米间隙结构对于二硫化钼的光致发光增强及光电探测增强。在合适的电磁激发下,金属纳米间隙中会产间隙模式等离激元,并伴有电磁场增强效应。此时将单层二硫化钼插入金属纳米间隙中,可得到110倍的光致发光增强。利用相同原理制备的光电探测器可获得882%的响应度提升,达到287.5 AW-1。
【图文】:

二维材料,异质结构,石墨


二维材料进行复合形成异质结构。研究表明二维材料可与零维、一维、三维材料直接逡逑接触便可形成异质结构,二维材料相互之间相互转移也可形成异质结构,从而可以取逡逑长补短,并形成丰富的器件种类,如图1.2所示。值得指出的是,二维材料在进行复合逡逑后,也会展现出全新的物理现象,如光掺杂[11,12】、面间激子[13,14]、库仑牵引[15]等。下逡逑面分别介绍石墨烯、二维二硫化钼、二维氮化硼的结构和性质。逡逑间_邋巧逦(b);D"-3邋M邋M邋(c>2_-逡逑___逡逑图1.2:二维材料异质结构[2]逡逑1.2.1石墨烯的基本结构、性质逡逑由于绝大部分对石墨烯的研究都是基于单层石墨烯,因此除非特别说明,下文提逡逑到的石墨烯都特指是单层石墨烯。从结构上看,石墨烯是由碳原子按正六边形分布而逡逑3逡逑

石墨,原子结构,碳原子,杂化


其通过几何变换可形成零维的富勒烯、一维的碳纳米管和三维逡逑的石墨(图1.3)[16:?。石墨烯的碳原子之间通过SP2杂化形成共价0键,键长为1.42义17]。逡逑石墨烯中的碳原子经过SP2杂化后形成的杂化轨道被完全填充,而垂直的P轨道只被填逡逑充一半,因此两个碳原子之间的P轨道会发生重叠从而形成71键[18]。逡逑.:.'■邋?,人f-.邋?邋;.邋.邋?.邋-.邋■■■?:邋■邋,邋x逦:??邋^邋.邋?逡逑-邋...;-?邋:邋NB 十邋J邋'邋.邋?邋.邋?邋.邋'邋.邋.i邋-?逦i逦-邋?.逡逑.邋?邋-邋■邋/邋■■邋-邋..逦^逦.邋,邋.邋-邋.邋?邋-邋.邋-邋.邋-邋,邋-邋,邋■邋-邋'邋■邋■邋?.邋'逡逑?逦,邋?邋,邋■邋^邋-邋;逡逑■逦,逦..广.广、广v产--逡逑CCxX^邋■逦■邋?邋■邋.邋-:邋^逦-.邋'邋?邋:邋COCO'..'
【学位授予单位】:浙江大学
【学位级别】:博士
【学位授予年份】:2019
【分类号】:TN36

【相似文献】

相关期刊论文 前10条

1 叶琳;;石墨烯产业前沿技术发展方向研究[J];新材料产业;2019年09期

2 赵慧江;;改性石墨烯增强丁腈橡胶性能研究现状及展望[J];中国设备工程;2019年20期

3 彭鹏;刘洪涛;武斌;汤庆鑫;刘云圻;;氮掺杂石墨烯的p型场效应及其精细调控(英文)[J];物理化学学报;2019年11期

4 林玲;王威;唐正霞;刘季锦花;赵婷婷;张昕曜;;退火温度对溶胶-凝胶法制备的TiO_2/石墨烯复合材料性能影响[J];电子器件;2019年05期

5 吴颖;郭昱良;章泽飞;桂馨;;石墨烯量子点的光热和光动力效应在杀菌中的应用[J];上海大学学报(自然科学版);2019年05期

6 赵竞;史群;陈客举;王德财;尹冬松;;多层石墨烯增强铝基复合材料微观组织研究[J];科技风;2019年32期

7 吾化信;;石墨烯具有驱蚊功效[J];人造纤维;2019年05期

8 丁海涛;黄文涛;邓呈逊;;氧化石墨烯材料在废水处理中的应用进展[J];安徽农学通报;2019年21期

9 刘巍;吕婷;陶美娟;;微波消解-电感耦合等离子体原子发射光谱法测定石墨烯材料中11种微量元素[J];理化检验(化学分册);2019年10期

10 慈海娜;孙靖宇;;基于化学气相沉积技术的粉体石墨烯的制备及能源领域应用[J];科学通报;2019年32期

相关会议论文 前10条

1 靳磊;于庆河;刘皓;张铭;刘凯歌;李凯;;石墨烯分散及其对防腐性能影响规律研究[A];第十届全国腐蚀大会摘要集[C];2019年

2 王庆国;张炜;王凯;王莎莎;;石墨烯在汽车领域的应用展望[A];第十八届中国科协年会——分2 中国新能源汽车产业创新发展论坛论文集[C];2016年

3 刘东;李丽波;由天艳;;电化学制备氮掺杂石墨烯及其在催化氧气还原反应中的应用[A];第十三届全国电分析化学学术会议会议论文摘要集[C];2017年

4 王莹;刘子顺;;通过缺陷设计实现石墨烯的自发卷起和组装[A];2018年全国固体力学学术会议摘要集(上)[C];2018年

5 郑龙;许宗超;张立群;温世鹏;刘力;;石墨烯/橡胶纳米复合材料的基础研究以及工业化应用[A];第十四届中国橡胶基础研究研讨会会议摘要集[C];2018年

6 邢瑞光;李亚男;张邦文;;功能化石墨烯/聚甲基丙烯酸甲酯复合材料的制备及介电性能研究[A];2019年第四届全国新能源与化工新材料学术会议暨全国能量转换与存储材料学术研讨会摘要集[C];2019年

7 高超;方波;;石墨烯宏观组装及多功能复合材料[A];中国化学会2017全国高分子学术论文报告会摘要集——主题M:高分子共混与复合体系[C];2017年

8 李永军;杨阳;戴静;黄晓宇;;功能化石墨烯、氟化石墨烯及石墨烷的制备[A];中国化学会2017全国高分子学术论文报告会摘要集——主题O:共价骨架高分子与二维高分子[C];2017年

9 梁秀敏;江雷;程群峰;;仿生石墨烯纤维研究进展[A];中国化学会2017全国高分子学术论文报告会摘要集——主题M:高分子共混与复合体系[C];2017年

10 方浩明;白树林;;三维石墨烯填充高导热弹性体[A];中国化学会2017全国高分子学术论文报告会摘要集——主题M:高分子共混与复合体系[C];2017年

相关重要报纸文章 前10条

1 重庆商报-上游新闻记者 严薇;诺奖得主科斯提亚·诺沃肖洛夫:重庆石墨烯产业大有可为[N];重庆商报;2019年

2 本报记者 樊小帅;石墨烯引领采暖新风尚[N];延安日报;2019年

3 宗华;科学家发明石墨烯染发剂[N];中国科学报;2018年

4 沈春蕾 刘言;金属所氧化石墨烯实现绿色制备[N];中国科学报;2018年

5 记者 秦志伟;规模制备石墨烯技术取得新进展[N];中国科学报;2017年

6 记者 赵婵莉;宁夏汉尧入选工信部石墨烯“一条龙”应用计划[N];华兴时报;2019年

7 范凌志;石墨烯电池,让手机告别“每日一充”?[N];环球时报;2019年

8 记者 袁静娴;打造石墨烯产业的华为[N];深圳商报;2019年

9 艾班;石墨烯生物材料制备成功[N];中国化工报;2014年

10 柯伟;石墨烯基础应用研究获新进展[N];科学时报;2011年

相关博士学位论文 前10条

1 冯晓冬;电子注激励石墨烯产生太赫兹辐射的研究[D];电子科技大学;2019年

2 曾省忠;基于AFM的石墨烯表面纳米摩擦研究[D];东华大学;2019年

3 杨宁;石墨烯—碳纳米管三维复合物的甲烷吸附行为机理与机械电子性能研究[D];桂林电子科技大学;2018年

4 秦凯强;三维纳米多孔石墨烯基复合材料的可控合成及其超电容性能研究[D];天津大学;2017年

5 王文洁;Dirac材料-拓扑绝缘体和石墨烯薄膜的电输运性质研究[D];天津大学;2017年

6 Fakhr E Alam;通过形成三维石墨烯微观网路结构增强聚合物基复合材料导热/导电性能的研究[D];中国科学院大学(中国科学院宁波材料技术与工程研究所);2018年

7 何东旭;石墨烯基复合材料的制备及电化学性能研究[D];电子科技大学;2019年

8 王学军;基于二维纳米材料生物传感及光电探测技术的研究[D];华东理工大学;2018年

9 郑贤宏;高性能石墨烯纤维及其柔性超级电容器研究[D];东华大学;2019年

10 邢睿;基于石墨烯的新型波导和可调微纳光器件的研究[D];北京交通大学;2019年

相关硕士学位论文 前10条

1 赵海玲;石墨烯量子点的制备及其应用研究[D];厦门大学;2018年

2 张森;多晶铜-石墨烯层状复合材料的剪切力学行为[D];中国工程物理研究院;2019年

3 吴永强;锰氧化物/石墨烯水凝胶制备及其电化学性能研究[D];杭州电子科技大学;2019年

4 王延伟;不同尺寸单晶石墨烯的制备及表面等离激元成像检测研究[D];北京交通大学;2019年

5 汤文帅;石墨烯基复合材料的制备及其电镀重金属废水资源化利用研究[D];合肥工业大学;2019年

6 刘佛送;MOF衍生物与石墨烯复合材料的制备及其电化学性能的研究[D];合肥工业大学;2019年

7 刘明辉;石墨烯材料在空气源热泵除霜技术中的应用研究[D];华北水利水电大学;2019年

8 赵欣悦;双频天线及石墨烯可重构天线的研究[D];合肥工业大学;2019年

9 张茵;基于金纳米颗粒/石墨烯修饰的电化学生物传感器的研究和应用[D];华中师范大学;2016年

10 刘汗清;石墨烯功能化及其水性聚氨酯复合体系的研究[D];合肥工业大学;2019年



本文编号:2693577

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dianzigongchenglunwen/2693577.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户19ef9***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com