亚波长光子学:纳米聚焦和二维极化激元
发布时间:2021-02-04 23:04
目前的纳米技术能够实现衍射极限的突破以及电磁波亚波长尺度的压缩,对光子学及相关学科的未来发展具有深远的影响。这一显著的进步在于所激发的表面等离激元,包括金属中的等离激元、电介质中的光学声子以及半导体中的激子等。等离激元能够用于新型纳米尺度器件的设计,实现亚波长尺度电磁波的束缚和调控,可以用于未来纳米尺度集成光电子器件、超分辨率成像、量子计算和单分子捕获方面的设计。纳米聚焦作为纳米光子学领域的一个重要领域,能够在纳米尺度对电磁波能量进行传递和调控,相应的产生了许多设计、优化和制造新型聚焦器件的技术。本文对二维材料中实现亚波长能量约束现象(TE声子极化模式)进行了预测和表征,并针对纳米聚焦器件提出了一种弥补理论设计与实际实现之间差距的新方法。本论文各章节的简要总结如下:1.尽管极化激元对于亚波长的束缚性十分重要,但现有的研究工作和实现的器件大多集中在TM模式。近期通过对石墨烯的研究,科学家预测二维材料中可能存在TE极化模式。在这项工作中,我们首次预测了超薄hBN平板中的TE极化激元模式,获得了远优于石墨烯TE极化模式的束缚性。这项工作让人们对TE极化模式有了更多的了解,并为TE极化模式的实...
【文章来源】:浙江大学浙江省 211工程院校 985工程院校 教育部直属院校
【文章页数】:91 页
【学位级别】:博士
【文章目录】:
Abstract
摘要
Dedication
Acronyms
Chapter One
1.1 Introduction
1.2 Photonics and the diffraction limit
1.3 Bulk surface polaritons
1.4 Transformation optics
1.5 Hyperbolic metamaterials
1.6 Effective medium theory
1.7 Thesis outline
Chapter Two Background on two-dimensional polaritons and nanofocusing
2.1 Introduction
2.2 Two-dimensional materials and their polaritons
2.2.1. Background of TE polaritons in two-dimensional materials
2.3 Optical response of two-dimensional materials
2.3.1 Optical property of graphene
2.3.2 Optical property of hBN
2.4 Electrodynamics of two-dimensional materials polaritons
2.4.1 TM dispersion of two-dimensional materials
2.4.2 TE dispersion of two-dimensional polaritons
2.5 Nanofocusing
2.5.1 Background of nanofocusing phenomena
2.5.2 Nanofocusing based on transformation optics
2.6 Probing near field photonics
Chapter Three Transverse electric phonon polaritons in /?BN and plasmonpolaritons in graphene
3.1 Introduction
3.2.Theoretical background
3.3.Properties of TE plasmons in graphene
3.4.Properties of TE phonons in hBN
3.5.Manifestation of TE phonon polaritons in hBN
3.6.Comparisons between TE plasmons in graphene and TE phonons in hBN
3.7.Existence condition of TE phonon polaritons in asymmetric environment
3.8.Effect of different optical response model of hBN to the TE polaritons
3.9 Conclusion
Chapter Four Mid-infrared nanofocusing based on Fragmented-high-ordertransformation optics (FHTO)
4.1 Introduction
4.2 Nanofocusing based on high-order transformation optics
4.3 Azimuthal transformation
4.4 Fragmented high-order transformation optics
4.5 Performance comparison of the FHTO with UHTO
4.6 Discussions
4.7 Non-paraxial 2D Gaussian beam
4.8 Effects of the fabrication error to the performance
4.9 Conclusion
Chapter Five Conclusion and future work
5.1 Conclusion
5.2 Other projects
5.2.1 Giant field enhancement at the transition between gain-loss media
5.2.2 Bifunctional acoustic metamaterials lens designed with coordinatetransformation
5.2.3 Manipulating surface plasmons polaritons with infinitely anisotropicmetamaterials
5.2.4 Toroidal localized spoof plasmons on compact metadisks
5.2.5 Launching phase-controlled surface plasmons on Babinet metasurfaces
5.2.6 Analog of giant magneto-impedance in magnetized ε-near-zero plasma
5.2.7 Structure-induced hyperbolic dispersion in waveguides
Appendix
Bibliography
Acknowledgements
List of publications
Other contributing publications
Funding
本文编号:3019080
【文章来源】:浙江大学浙江省 211工程院校 985工程院校 教育部直属院校
【文章页数】:91 页
【学位级别】:博士
【文章目录】:
Abstract
摘要
Dedication
Acronyms
Chapter One
1.1 Introduction
1.2 Photonics and the diffraction limit
1.3 Bulk surface polaritons
1.4 Transformation optics
1.5 Hyperbolic metamaterials
1.6 Effective medium theory
1.7 Thesis outline
Chapter Two Background on two-dimensional polaritons and nanofocusing
2.1 Introduction
2.2 Two-dimensional materials and their polaritons
2.2.1. Background of TE polaritons in two-dimensional materials
2.3 Optical response of two-dimensional materials
2.3.1 Optical property of graphene
2.3.2 Optical property of hBN
2.4 Electrodynamics of two-dimensional materials polaritons
2.4.1 TM dispersion of two-dimensional materials
2.4.2 TE dispersion of two-dimensional polaritons
2.5 Nanofocusing
2.5.1 Background of nanofocusing phenomena
2.5.2 Nanofocusing based on transformation optics
2.6 Probing near field photonics
Chapter Three Transverse electric phonon polaritons in /?BN and plasmonpolaritons in graphene
3.1 Introduction
3.2.Theoretical background
3.3.Properties of TE plasmons in graphene
3.4.Properties of TE phonons in hBN
3.5.Manifestation of TE phonon polaritons in hBN
3.6.Comparisons between TE plasmons in graphene and TE phonons in hBN
3.7.Existence condition of TE phonon polaritons in asymmetric environment
3.8.Effect of different optical response model of hBN to the TE polaritons
3.9 Conclusion
Chapter Four Mid-infrared nanofocusing based on Fragmented-high-ordertransformation optics (FHTO)
4.1 Introduction
4.2 Nanofocusing based on high-order transformation optics
4.3 Azimuthal transformation
4.4 Fragmented high-order transformation optics
4.5 Performance comparison of the FHTO with UHTO
4.6 Discussions
4.7 Non-paraxial 2D Gaussian beam
4.8 Effects of the fabrication error to the performance
4.9 Conclusion
Chapter Five Conclusion and future work
5.1 Conclusion
5.2 Other projects
5.2.1 Giant field enhancement at the transition between gain-loss media
5.2.2 Bifunctional acoustic metamaterials lens designed with coordinatetransformation
5.2.3 Manipulating surface plasmons polaritons with infinitely anisotropicmetamaterials
5.2.4 Toroidal localized spoof plasmons on compact metadisks
5.2.5 Launching phase-controlled surface plasmons on Babinet metasurfaces
5.2.6 Analog of giant magneto-impedance in magnetized ε-near-zero plasma
5.2.7 Structure-induced hyperbolic dispersion in waveguides
Appendix
Bibliography
Acknowledgements
List of publications
Other contributing publications
Funding
本文编号:3019080
本文链接:https://www.wllwen.com/kejilunwen/dianzigongchenglunwen/3019080.html