面向单细胞动态筛选及回收的微流控平台的研究
发布时间:2022-10-06 16:14
细胞在形态学、增殖和对外部刺激的响应方面有高度异质性。单细胞分析是在单个细胞水平研究成百上千个细胞,它可以获得传统的基于大量细胞平均值的研究中无法得到重要数据。因此,该技术于2007年被《麻省理工大学技术综述》评为国际十大突破技术之一。单细胞克隆分析可以在单细胞水平研究细胞的生长动力学机理、分裂或分化机制。从混合的细胞群体中分离单个细胞是进行单细胞克隆培养的前提。由于微流控芯片具有独特的单细胞操作能力和对细胞微环境精确控制的潜力,现已广泛应用于单细胞捕获和分析。但是,单个细胞在现有微流控装置中的成活率和克隆集落形成率非常低。而且,芯片上的细胞很难相互独立的回收出来以便利用传统设备进行后续分析。因此将大量单细胞接种到独立的培养室,是可以解决单细胞克隆扩增研究的关键问题之一。本文设计并制作了一款可与标准孔板兼容的微流控芯片。该芯片利用集成可调节阀门和相应通孔筛选并回收符合尺寸要求的单个微球到标准384孔板上,确保实现每孔一个微球。该芯片具有三个独立层(气体层、薄膜层和流体层)和两种操作模式(高通量捕获单细胞/微球或基于细胞/微球大小的动态筛选和可寻址回收)。首先,本文采用理论计算、数值模拟...
【文章页数】:65 页
【学位级别】:硕士
【文章目录】:
摘要
Abstract
Acknowledgement
Nomenclature
Chapter 1 Introduction
1.1 Background and significance
1.1.1 Background
1.1.2 Significance
1.2 Current situation and analysis of research
1.2.1 Current situation of research
1.2.2 Literature review
1.3 Objective
1.4 Key novelty
1.5 Thesis outline
Chapter 2 Design and working principle
2.1 Microfluidics platform design
2.1.1 Platform design
2.1.2 Chip design
2.2 Working principle
2.3 Working modes
2.4 Summary
Chapter 3 Analytical and numerical methods
3.1 Solid mechanics simulation
3.1.1 Governing equations
3.1.2 Model Geometry
3.1.3 Boundary condition
3.1.4 Model validation
3.2 Fluid mechanics simulation
3.2.1 Governing equations
3.2.2 Model Geometry
3.2.3 Boundary conditions
3.2.4 Model validation
3.3 Summary
Chapter 4 Experimental methods
4.1 Chip manufacture
4.2 Membrane deformation study
4.3 Fluid flow study
4.4 Microsphere trapping and release
4.5 Summary
Chapter 5 Results and discussion
5.1 The hydrodynamic models
5.1.1 PDMS membrane deformation study
5.1.2 Flow resistance study
5.1.3 Flow rate study
5.2 Shear stress study
5.3 Chip manufacture parameters study
5.3.1 Membrane manufacture study
5.3.2 Alignment study
5.4 Single microspheres screening results
5.5 Summary
Conclusions
References
Author’s Publications and other outcomes
详细中文摘要
本文编号:3686960
【文章页数】:65 页
【学位级别】:硕士
【文章目录】:
摘要
Abstract
Acknowledgement
Nomenclature
Chapter 1 Introduction
1.1 Background and significance
1.1.1 Background
1.1.2 Significance
1.2 Current situation and analysis of research
1.2.1 Current situation of research
1.2.2 Literature review
1.3 Objective
1.4 Key novelty
1.5 Thesis outline
Chapter 2 Design and working principle
2.1 Microfluidics platform design
2.1.1 Platform design
2.1.2 Chip design
2.2 Working principle
2.3 Working modes
2.4 Summary
Chapter 3 Analytical and numerical methods
3.1 Solid mechanics simulation
3.1.1 Governing equations
3.1.2 Model Geometry
3.1.3 Boundary condition
3.1.4 Model validation
3.2 Fluid mechanics simulation
3.2.1 Governing equations
3.2.2 Model Geometry
3.2.3 Boundary conditions
3.2.4 Model validation
3.3 Summary
Chapter 4 Experimental methods
4.1 Chip manufacture
4.2 Membrane deformation study
4.3 Fluid flow study
4.4 Microsphere trapping and release
4.5 Summary
Chapter 5 Results and discussion
5.1 The hydrodynamic models
5.1.1 PDMS membrane deformation study
5.1.2 Flow resistance study
5.1.3 Flow rate study
5.2 Shear stress study
5.3 Chip manufacture parameters study
5.3.1 Membrane manufacture study
5.3.2 Alignment study
5.4 Single microspheres screening results
5.5 Summary
Conclusions
References
Author’s Publications and other outcomes
详细中文摘要
本文编号:3686960
本文链接:https://www.wllwen.com/kejilunwen/dianzigongchenglunwen/3686960.html