基于ASTER数据的富钾岩石遥感信息提取研究
本文关键词: 遥感 富钾岩石 氧化物含量 光谱 出处:《中国地质大学(北京)》2015年硕士论文 论文类型:学位论文
【摘要】:我国非水溶性的钾盐资源非常丰富,以钾长石和伊利石为主的各种富钾岩石的分布非常广泛,几乎遍布全国。如果可以将这部分潜在资源高效加以利用,则可以在一定程度上对水溶性钾盐资源的匮乏进行相应的弥补。针对我国钾矿资源不足的现况、促进钾盐(肥)矿产资源的可持续开发与利用,本次研究将采用先进的遥感技术对河南卢氏县和嵩县等地非水溶性钾矿资源开展遥感地质调查与评价。研究目的是获取工作区的客观基础数据,形成综合分析和资源潜力评价报告。为高效、快速而精准地获得东秦岭北缘富钾侵入岩带遥感勘查数据提供一定的技术支撑。遥感在岩石信息的提取方面的应用,主要是依靠波段合成及图像增强及岩石矿物光谱特征来实现的。近些年来,研究定量反演岩石中氧化物含量来分析岩石类型从而来识别岩性是遥感岩石学定量反演中的一个方向。根据岩石化学分析结果可知,通过岩石中氧化物含量来识别富钾岩石是一种行之有效的方法。为了能够准确地对富钾岩石资源进行圈定,本文选择河南嵩县、卢氏县地区的富钾岩体作为研究对象,通过ASD便携式光谱仪对研究区内37个岩石样本进行了测定,基于遥感岩石学的岩石识别理论,利用基于图像统计分析和基于岩石光谱特征来对研究区富钾岩石进行岩性识别,并通过分析对比验证两种识别方法的效果。然后,通过对研究区采样点光谱的数据变换,基于多元逐步回归分析,利用重采样光谱与岩石氧化物分析结果,得到氧化物含量反演模型,并利用ENVI图像处理软件,以ASTER遥感数据为数据源,对研究区氧化物含量进行反演;通过IDL语言将CIPW(标准矿物计算)算法实现,得到研究区岩石主要标准矿物石英、钠长石、正长石、钙长石的质量分数。最后在算数运算和比值运算的基础上,建立富钾岩石的提取规则,对研究区富钾岩体进行提取。综合定性与定量识别结果,对研究区富钾岩体提取方法进行综合分析与评价。实验结果表明,基于地面实测光谱,分析利用岩石光谱曲线与岩石化学分析结果,建立富钾岩石信息提取模型,具有快速识别与圈定富钾岩石资源的潜力,该方法具有一定的推广价值。
[Abstract]:Our country is rich in insoluble potash salt resources, and all kinds of potash rich rocks, mainly potash feldspar and Illite, are widely distributed all over the country. To a certain extent, we can make up for the scarcity of water-soluble potash resources. In view of the present situation of the shortage of potash mineral resources in China, we can promote the sustainable development and utilization of potash (fertilizer) mineral resources. This study will use advanced remote sensing technology to carry out remote sensing geological survey and evaluation of insoluble potassium ore resources in Lushi County and Songxian County of Henan Province. The purpose of the study is to obtain the objective basic data of the working area. Forming comprehensive analysis and evaluation report of resource potential. To provide certain technical support for obtaining high efficiency, fast and accurate remote sensing exploration data of K-rich intrusive rock belt in the northern margin of East Qinling Mountains, and the application of remote sensing in the extraction of rock information, It is mainly achieved by band synthesis, image enhancement and spectral characteristics of rock minerals. In recent years, Quantitative inversion of oxide content in rocks to analyze rock types and identify lithology is one of the directions in quantitative inversion of remote sensing petrology. It is an effective method to identify the potash rich rock by the oxide content in the rock. In order to accurately delineate the potassium rich rock resources, this paper chooses the potash rich rock mass in Songxian and Lushi County of Henan Province as the research object. 37 rock samples in the study area were measured by ASD portable spectrometer. Based on the rock recognition theory of remote sensing petrology, the lithology identification of the potash rich rocks in the study area was carried out based on the statistical analysis of images and the characteristics of rock spectrum. The effect of the two recognition methods is verified by analysis and comparison. Then, through the data transformation of the sampling point spectrum in the study area, based on the multivariate stepwise regression analysis, the resampling spectrum and the rock oxide analysis results are used. The oxide content inversion model is obtained, and the ENVI image processing software is used to retrieve the oxide content in the study area using ASTER remote sensing data as data source, and the standard mineral calculation algorithm is implemented by IDL language. The mass fraction of quartz, albite, orthoclase and calcium feldspar in the study area is obtained. Finally, on the basis of arithmetic operation and ratio operation, the extraction rules of K-rich rocks are established. The method of extracting the potash rich rock mass in the study area is analyzed and evaluated by synthesizing the qualitative and quantitative identification results. The experimental results show that, based on the measured spectra on the ground, Based on the spectral curve of rock and the result of petrochemical analysis, the information extraction model of K-rich rock is established, which has the potential of quickly identifying and delineating the resources of K-rich rock, and this method has certain popularizing value.
【学位授予单位】:中国地质大学(北京)
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:P619.211;P627
【参考文献】
相关期刊论文 前10条
1 马鸿文;苏双青;刘浩;杨雪;彭辉;俞子俭;;中国钾资源与钾盐工业可持续发展[J];地学前缘;2010年01期
2 高万里;张绪教;王志刚;张紫程;张耀玲;;基于ASTER遥感图像的东昆仑造山带岩性信息提取研究[J];地质力学学报;2010年01期
3 刘允良,吴至善,,王孝沛,贾建秀;逐步回归分析在岩石波谱及化学成分分析中的应用[J];国土资源遥感;1994年03期
4 张玉君,杨建民;基岩裸露区蚀变岩遥感信息的提取方法[J];国土资源遥感;1998年02期
5 刘超群;马祖陆;莫源富;;遥感岩性识别研究进展与展望[J];广西科学院学报;2007年02期
6 马鸿文;杨静;苏双青;刘梅堂;郑红;王英滨;戚洪彬;张盼;;富钾岩石制取钾盐研究20年:回顾与展望[J];地学前缘;2014年05期
7 顾汉念;王宁;杨永琼;田元江;;不溶性含钾岩石制备钾肥研究现状与评述[J];化工进展;2011年11期
8 陈静;含钾岩石资源开发利用及前景预测[J];化工矿产地质;2000年01期
9 陈勇敢;韩先菊;张慧玉;王美娟;傅扬;汤媛媛;常春郊;;基于岩矿蚀变组分特征光谱定量反演遥感蚀变信息研究[J];遥感信息;2011年04期
10 闫柏琨;刘圣伟;王润生;甘甫平;陈伟涛;杨苏明;;热红外遥感定量反演地表岩石的SiO_2含量[J];地质通报;2006年05期
相关博士学位论文 前2条
1 俞乐;多源遥感信息快速处理与岩性信息自动提取方法研究[D];浙江大学;2010年
2 杨佳佳;基于多源遥感数据的青海格尔木地区岩矿信息提取研究[D];吉林大学;2012年
相关硕士学位论文 前3条
1 周欢;托里西南部遥感异常信息提取研究[D];新疆大学;2009年
2 郑硕;基于ASTER多光谱遥感数据的花岗岩类岩性识别与提取[D];安徽师范大学;2012年
3 王华睿;新疆黄山地区ASTER数据遥感岩矿信息提取研究[D];中国地质大学(北京);2014年
本文编号:1532871
本文链接:https://www.wllwen.com/kejilunwen/diqiudizhi/1532871.html