当前位置:主页 > 科技论文 > 地质论文 >

隐伏断层地震诱发滑坡易发性多尺度评价

发布时间:2018-03-04 00:30

  本文选题:地震滑坡 切入点:易发性评价 出处:《浙江大学》2017年硕士论文 论文类型:学位论文


【摘要】:地震滑坡常见于地震灾害链中,不仅带来巨大的生命财产损失,还严重影响了震后救援工作。地震滑坡物理机制复杂,影响因素繁多,基于数据挖掘和GIS的地震滑坡易发性评价有效规避了基于物理模型评价存在的物理参数和监测数据获取困难的问题,成为地震滑坡易发性评价的重要手段。本文以2004年日本新o_中越地震为研究对象,本次地震主震震级为6.8级,其后陆续发生了 4次震级大于6.0级的余震,诱发了数以千计的滑坡,此次地震为隐伏断层地震。本文采用了三种数据挖掘方法,同时为了弥补隐伏断层地震缺乏地表破裂带这一重要影响因子的不足,新增了同震地表变形作为影响因子,分别针对大面积区域和震中区域两个尺度开展了基于数据挖掘和GIS的地震滑坡易发性评价工作。主要的研究工作和研究成果如下:(1)针对大面积研究区域,采用了逻辑回归、支持向量机和人工神经网络等三个数据挖掘模型开展了地震滑坡易发性评价,并对研究区域进行了合理的易发性等级分区。结果表明三种模型方法都取得了较好的结果,ROC曲线下面积都达到了 80%以上,进行易发性分区后随着易发性等级提升,区域内滑坡比例呈较为明显的梯度提升。综合比较确定人工神经网络效果最好。(2)针对震中区域,在原有影响因子的基础上新增同震地表变形作为影响因子,采用模拟效果最好的的人工神经网络进一步开展地震滑坡易发性评价,获得了震中区域的精细化地震滑坡易发性等级分区图。研究结果显示考虑同震地表变形对结果有一定提升,其贡献大于常见的坡向和距道路的距离等影响因子。因此,尤其是针对隐伏断层地震影响因子资料不足的情况下,同震地表变形具备较大的应用价值。(3)多尺度区域评价结果对比分析表明,相较于大面积研究区域地震滑坡易发性评价,震中区域研究在同一区域取得更为精细的地震滑坡易发性分区图,但模拟结果中ROC曲线下面积普遍较低。大面积区域和震中区域地震滑坡易发性评价相结合,实现了多尺度地震滑坡易发性分区,满足地震滑坡灾害的不同层面的防控治理的需要。
[Abstract]:Earthquake landslide is common in earthquake disaster chain, which not only brings huge loss of life and property, but also seriously affects post-earthquake rescue work. The evaluation of seismic landslide vulnerability based on data mining and GIS effectively avoids the problems of obtaining physical parameters and monitoring data based on physical model evaluation. It has become an important means to evaluate the vulnerability of earthquake landslides. In this paper, the earthquake of 2004 in Japan was studied. The magnitude of the earthquake was 6.8, and four aftershocks with magnitude greater than 6.0 occurred one after another. Thousands of landslides have been induced, and the earthquake is a concealed fault earthquake. In this paper, three methods of data mining are used to make up for the deficiency of the hidden fault earthquake lacking the important factor of surface rupture zone. The coearthquake surface deformation is added as the influence factor, The evaluation of seismic landslide vulnerability based on data mining and GIS is carried out on two scales of large area area and epicenter area respectively. The main research work and research results are as follows: 1) for large area study area, logical regression is adopted. Three data mining models, support vector machine (SVM) and artificial neural network (Ann), are used to evaluate the vulnerability of earthquake and landslide. The results show that the area under the ROC curve is more than 80%, and the area increases with the grade of susceptibility. Compared with each other, artificial neural network has the best effect. Aiming at the epicentral area, the coseismic surface deformation is added as the influence factor on the basis of the original influence factors. The artificial neural network, which is the best simulation method, is used to further evaluate the vulnerability of seismic landslides. The fine zoning map of landslide susceptibility in epicentral area is obtained. The results show that considering the coseismic surface deformation, its contribution is greater than that of common influencing factors, such as slope direction and distance from road, and so on. Especially in view of the lack of data on the influencing factors of concealed faulted earthquakes, the results of multi-scale regional evaluation of coearthquake ground deformation have great application value. The results show that compared with the large area study area, seismic landslide susceptibility evaluation is better than that of coearthquake ground deformation. The regional study of epicenter obtained a more precise zoning map of seismic landslide susceptibility in the same area, but the area under the ROC curve is generally lower in the simulation results, and the large area is combined with the seismic landslide susceptibility evaluation in the epicenter region. The multi-scale seismic landslide prone zone is realized, which meets the need of prevention and control of different levels of earthquake landslide disaster.
【学位授予单位】:浙江大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:P642.22

【参考文献】

相关期刊论文 前10条

1 ZHOU Hong-jian;WANG Xi;YUAN Yi;;Risk Assessment of Disaster Chain: Experience from Wenchuan Earthquake-induced Landslides in China[J];Journal of Mountain Science;2015年05期

2 许冲;;利用同震滑坡分析2014年鲁甸地震震源性质与破裂过程[J];工程地质学报;2015年04期

3 柯福阳;李亚云;;基于BP神经网络的滑坡地质灾害预测方法[J];工程勘察;2014年08期

4 谭龙;陈冠;王思源;孟兴民;;逻辑回归与支持向量机模型在滑坡敏感性评价中的应用[J];工程地质学报;2014年01期

5 谭龙;陈冠;曾润强;熊木齐;孟兴民;;人工神经网络在滑坡敏感性评价中的应用[J];兰州大学学报(自然科学版);2014年01期

6 许冲;徐锡伟;;2008年汶川地震导致的斜坡物质响应率及其空间分布规律分析[J];岩石力学与工程学报;2013年S2期

7 陈晓清;崔鹏;游勇;杨宗佶;孔应德;;4·20芦山地震次生山地灾害与减灾对策[J];地学前缘;2013年03期

8 许冲;徐锡伟;吴熙彦;戴福初;姚鑫;姚琪;;2008年汶川地震滑坡详细编目及其空间分布规律分析[J];工程地质学报;2013年01期

9 许冲;徐锡伟;;基于不同核函数的2010年玉树地震滑坡空间预测模型研究[J];地球物理学报;2012年09期

10 ZHAO Yu;KONAGAI Kazuo;FUJITA Fujitomo;;Multi-scale Decomposition of Co-seismic Deformation from High Resolution DEMs:a Case Study of the 2004 Mid-Niigata Earthquake[J];Acta Geologica Sinica(English Edition);2012年04期

相关博士学位论文 前1条

1 王志旺;基于GIS技术的区域滑坡分形特征分析与危险性评价[D];中国地质大学;2010年

相关硕士学位论文 前3条

1 袁文旗;警用地理信息系统的研究与实现[D];北京交通大学;2010年

2 陶舒;汶川地震滑坡遥感信息提取及灾害危险性评价研究[D];首都师范大学;2009年

3 高克昌;基于GIS的万州区滑坡地质灾害危险性评价研究[D];重庆师范大学;2003年



本文编号:1563383

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/diqiudizhi/1563383.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户b2b87***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com