当前位置:主页 > 科技论文 > 地质论文 >

黄土基坑降水影响周边环境沉降的模型试验研究

发布时间:2018-05-03 19:15

  本文选题:黄土 + 基坑降水 ; 参考:《西安工业大学》2017年硕士论文


【摘要】:针对较高地下水位条件下的深大黄土基坑存在的问题,为研究黄土基坑降水对环境沉降的影响,保证安全,在相似模型试验中采取对比试验方法,研究了不同降水方案对地面沉降的影响,并在试验的基础上设置止水帷幕、启用回灌系统,研究对沉降控制的作用以及最合理的帷幕深度与回灌压力,得到了以下结论:1)以硅酸盐水泥作为胶结骨料配制的土样在测试中表现出与原状结构性黄土样相似的性质。对原状黄土、重塑黄土以及两种人工配置的土样进行不条件下的试验,得到两种方法制备的土样在一定的含水率条件下,各项性质变化曲线与原状黄土基本吻合。而试验中结构性黄土试样的粘结材料用选水泥是结构强度、湿陷系数、固结系数、渗透系数等能达到原状黄土的90%以上,而且该方法更为简单易于操作实现,有利于配制大量土样进行模型试验,最终选用1%的水泥掺量以10%含水率配制试验所需土体;2)黄土基坑潜水层中的降水过程中,在降水井出水量基本达到稳定状态之后,以试验1a中沉降值最大的A3点为例,其最终沉降值为-7.41mm,在降水开始的1-4天内,沉降值以一个较大的速率增长,平均每天为-1.82mmm,4-9天增长速率减小,日均-0.39mm,降水引起的地面沉降在约在降水停止后1到2天达到基本稳定;降水停止之后,沉降值会产生小幅反弹,最大回弹幅度7%,最小为2%,平均约为5%;降水过程中各测点水位变化呈现出漏斗状,水位较低处相应于地面沉降量较大;停止降水之后一天的时间内,各测井内水位迅速上升至开始状态。3)基坑降水过程中随着单次降水深度的增加,引起的地面沉降量也在增大,A3点最终沉降值在单次降深为-4cm为-7.41mm,单次降深为-5cm时为-7.54mm,单次降深为-6cm时为-7.61mm,可以得知工程实践中,单次降水深度越大,对周边影响也越大。基坑在降水过程中,对周围土体产生的沉降呈现漏斗状分布,随与基坑距离沉降值先增大后减小,试验1a中基坑边缘D3处为-6.55mmm,距离基坑30cm处A23沉降值最大为-7.24mm,模型箱边缘的A33点仅有-4.12mm。因此,基坑降水对距离在一定距离上的建筑物影响较大,容易导致沿降水影响径方向跨度较大的建筑物产生不均匀沉降;4)止水帷幕的设置能够减小降水对基坑周边沉降的影响。止水帷幕深度的增加,使得建筑的最终沉降值减小:帷幕深度为45cm时D4沉降值为-6.76mm,比不设置帷幕时的-8.22mm减小了 1.46mm,帷幕深度为55mm时D4沉降值为-6.56mm。在帷幕深度到一定程度超过50cm后,继续增加对于控制沉降效果不明显;5)合理的回灌压力的能够减小降水对基坑周边沉降的影响。回灌压力的增加,使得建筑的最终沉降值以及倾斜率减小减小。启用回灌前,建筑A的最大沉降值D4处为-6.65mm,倾斜率为0.178%,回灌压力为0.15MPa时最大沉降值为-5.24mmm倾斜率减为0.101%。回灌压力超过0.15MPa之后,最大沉降值减小为-5.21mm,但是倾斜率却急速增大到0.131%,其原因为过大压力使得回灌井周边产生突涌,土体稳定性遭到破坏。本文通过相似模型试验研究了工程降水对深基坑性状及周边地面沉降的影响,提出在基坑降水中应采取合理的降水深度、帷幕深度、回灌压力相结合,希望能为深基坑的设计施工尽微薄之力,最后在试验基础上对下一步的研究方向做了简单的讨论。
[Abstract]:In order to study the existing problems of deep loess foundation pit under the condition of high groundwater level, in order to study the influence of the precipitation on the environmental settlement of the loess foundation pit, ensure the safety, the effect of different precipitation schemes on the ground settlement is studied in the similar model test, and the water stop curtain is set on the basis of the test, and the recharge system is enabled. Research on the effect of settlement control, the most reasonable curtain depth and recharge pressure, the following conclusions are obtained: 1) the soil samples prepared with Portland cement as cemented aggregate show similar properties to the original structural loess samples. The original loess, remolded loess and two artificial soil samples are unconditional. Under certain water content conditions, the curves of the properties of the two methods are basically consistent with the original loess. In the test, the structural strength, the collapsibility coefficient, the consolidation coefficient, the permeability coefficient and so on can reach more than 90% of the original loess, and the method is more simple. It is easy to operate, and it is beneficial to make up a large number of soil samples for model test. Finally, 1% of the cement content is selected to prepare the soil for the test with 10% water content. 2) during the precipitation process in the submersible layer of the loess foundation pit, the A3 point with the largest settlement value in the test 1a is taken as an example, and the final settlement value is the final settlement value. -7.41mm, in the 1-4 day of precipitation, the settlement value increased at a large rate, average -1.82mmm per day, the growth rate of 4-9 days decreased, the daily average -0.39mm, the ground subsidence caused by precipitation reached the basic stability about 1 to 2 days after the precipitation stopped. After the precipitation stopped, the subsidence value would produce a small rebound, the maximum rebound amplitude was 7%, the minimum was 2%. With an average of about 5%, the water level of each point in the precipitation process shows a funnel shape, the lower the water level is corresponding to the ground settlement, and the water level in the well logging is rapidly rising to the starting state.3 in one day after the precipitation. With the increase of the single precipitation depth in the precipitation process, the ground subsidence is also increasing, the A3 point is also increased. The final settlement value is -4cm -7.41mm, the single drop depth is -5cm -7.54mm, and the single drop depth is -6cm is -7.61mm. It can be found that the greater the single precipitation depth is, the greater the influence on the surrounding in the engineering practice. In the process of precipitation, the settlement of the surrounding soil presents a funnel-shaped distribution, with the distance settlement value with the foundation pit. After increasing, the edge of the foundation pit in the test 1a is D3 -6.55mmm, the maximum A23 settlement value from the foundation pit 30cm is -7.24mm, and the A33 point at the edge of the model box is only -4.12mm., so the dewatering of the foundation pit has a great influence on the building distance on a certain distance, and it is easy to cause the uneven settlement of the buildings with the larger direction span of the precipitation; 4) The setting of water stop curtain can reduce the influence of precipitation on the surrounding settlement of the foundation pit. The increase of the depth of the curtain can reduce the final settlement value of the building: the D4 settlement value is -6.76mm when the curtain depth is 45cm, and the -8.22mm reduces 1.46mm compared to the curtain without the curtain, and the D4 settlement value of the curtain is -6.56mm. in the curtain depth to a certain range when the curtain depth is 55mm. When the degree exceeds 50cm, the effect of the control settlement is not obvious; 5) the reasonable recharge pressure can reduce the effect of precipitation on the surrounding settlement of the foundation pit. The increase of the recharge pressure makes the final settlement value and the inclination of the building decrease. The maximum settlement value of the building A is D4 before the recharge, and the slope rate is 0.178%. When the maximum settlement value is 0.15MPa, the maximum settlement value of -5.24mmm is reduced to 0.101%. recharge pressure exceeding 0.15MPa, and the maximum settlement value decreases to -5.21mm, but the inclination rate increases rapidly to 0.131%. The reason is that excessive pressure makes a sudden surge around the recharge well, and the stability of soil is destroyed. This paper is studied by a similar model test. The effect of Engineering precipitation on the properties of deep foundation pit and the surrounding ground subsidence is discussed. It is suggested that reasonable precipitation depth, curtain depth and recharge pressure should be combined in the dewatering of foundation pit, and it is hoped that the design and construction of deep foundation pit can be as thin as possible. Finally, the research direction of the next step is briefly discussed on the basis of the experiment.

【学位授予单位】:西安工业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TU463;TU433

【相似文献】

相关期刊论文 前10条

1 傅鑫谊,万力,田家良;有限元数值模拟技术应用于基坑降水设计和结构防浮分析[J];水文地质工程地质;2003年01期

2 孙卫红;;浅谈某基坑降水排水施工方案[J];科技风;2008年20期

3 李伟民;徐波;;基坑降水技术在工程中的应用[J];民营科技;2009年08期

4 王晓理;赵敏;;浅析基坑降水对邻近建(构)筑物影响的研究现状及发展方向[J];黑龙江科技信息;2012年03期

5 马东林;;基坑降水布置浅析[J];科技信息;2012年09期

6 袁琦;;浅谈建筑工程基坑降水技术的应用[J];科技资讯;2012年10期

7 吴军;;浅谈基坑降水技术在建筑工程施工中的应用[J];黑龙江科技信息;2013年25期

8 贺大印;基坑降水值得重视的问题[J];工程地质学报;1994年03期

9 关宇;;基坑降水技术在建筑工程施工中的应用分析[J];黑龙江科技信息;2014年08期

10 龙剑杰;;轨道交通下立交区间基坑降水技术[J];上海地质;2008年04期

相关会议论文 前10条

1 张朝辉;张理想;董鸿儒;;基坑降水对周边建筑物的影响[A];河南省土木建筑学会2010年学术大会论文集[C];2010年

2 兰坚强;赖树钦;;大面积基坑降水方法及应用实例[A];探矿工程(岩土钻掘工程)技术与可持续发展研讨会论文集[C];2003年

3 杜平伍;;济源某基坑降水详谈[A];河南地球科学通报2009年卷(下册)[C];2009年

4 张兴军;张湖滨;;建筑工程基坑降水设计方案优化的探讨[A];河南省土木建筑学会2010年学术大会论文集[C];2010年

5 叶耀东;葛世平;叶为民;吴颖;;无支护基坑降水设计与施工[A];地质与可持续发展——华东六省一市地学科技论坛文集[C];2003年

6 程璐;朱国荣;王鸽;;基坑降水中的地下水流数值模拟[A];水工渗流研究与应用进展——第五届全国水利工程渗流学术研讨会论文集[C];2006年

7 谢康和;应宏伟;杨伟;胡安蜂;徐洋;;基坑降水对周围地表沉降的影响分析[A];地基处理理论与实践——第七届全国地基处理学术讨论会论文集[C];2002年

8 樊向阳;缪俊发;顾国荣;;基坑降水引起的地面变形[A];第七届全国工程地质大会论文集[C];2004年

9 宁曹;;城市地下工程施工中的基坑降水技术探讨[A];2014年4月建筑科技与管理学术交流会论文集[C];2014年

10 卢磊;倪昆;;浅谈关于工程基坑降水的问题[A];河南地球科学通报2012年卷[C];2012年

相关重要报纸文章 前2条

1 本报记者 任佳;低能耗基坑降水不是个传说[N];中国建设报;2010年

2 张希勤;基坑降水在建筑施工中的应用[N];伊犁日报(汉);2006年

相关硕士学位论文 前10条

1 冯雨润之;北京某地铁站基坑降水数值模拟与沉降研究[D];中国地质大学(北京);2015年

2 于圣平;黄土基坑降水对周边建筑物影响性评价研究[D];西安工业大学;2015年

3 楚刘辉;关于苏州地铁车站基坑降水设计与施工的研究[D];石家庄铁道大学;2015年

4 刘万金;工程模糊集理论在基坑降水方案中的优化比选[D];黑龙江大学;2015年

5 杨坤;基坑降水引起地面沉降的机理分析及应用[D];安徽理工大学;2016年

6 贾方;洞庭湖大桥锚碇基坑降水研究[D];长沙理工大学;2015年

7 李青青;邯郸市某工程基坑降水对基坑支护的影响分析[D];河北工程大学;2016年

8 苑成旺;基坑降水对周边环境影响的研究[D];吉林建筑大学;2017年

9 孟令冬;黄土基坑降水影响周边环境沉降的模型试验研究[D];西安工业大学;2017年

10 陶书煜;基坑降水引起的地表沉降及围护结构位移分析[D];北京交通大学;2012年



本文编号:1839741

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/diqiudizhi/1839741.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户d23ef***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com