当前位置:主页 > 科技论文 > 地质论文 >

地球物理采集节点设备的设计与实现

发布时间:2018-05-07 03:25

  本文选题:FPGA + ARM ; 参考:《中国科学技术大学》2016年硕士论文


【摘要】:随着地球物理勘探技术的不断发展,探测设备的器件正向着更高精度的ADC、处理能力更强的CPU、以及更加先进的传感器的方向升级换代,以采集到更高保真、更丰富、更清晰的地震数据。然而当前采集设备体积庞大,在探测大范围地理区域时,传输电缆长度受到距离的限制、不能实时处理和保存数据、时钟同步难度大。本文提出一种分布式探测方案,利用GPS的精准授时信号同步各节点设备的时钟,构成一个探测网络。把GPS、ARM、FPGA、ADC集成到一个板子上,组成一个独立的探测节点,缩小了设备体积以便携带。节点设备使用内部电源供电以脱离电缆长度的限制,同时使用强大的CPU对数据进行实时处理并存储在内部存储器中。本论文共分为六个部分:第一章简单介绍了当前地球物理采集设备现状以及发展趋势,接着研究了GPS精准授时在地球物理探测中的应用及相关的技术。第二章主要介绍了地球物理节点设备的总体设计结构,包括硬件电路的数据传输流程设计、硬件电路的PCB元件布置方案,FPGA部分采集数据以及数据封包逻辑总体设计,ARM部分采集数据解析与同步时钟对齐分析程序总体设计。第三章详细介绍了地球物理节点设备硬件电路的设计,包括电源部分的供电电源设计与器件选型,数据采集处理的详细电路设计与相关器件介绍,数据存储分析电路的详细设计与相关器件介绍,接着介绍了本论文设计采用的ADC采集芯片,最后介绍了模拟信号源的相关设计第四章首先从FPGA的硬件描述语言(verilog)进行介绍同时讲述了FPGA的仿真工具与开发环境,接着介绍了ADC控制器的逻辑设计,GPS数据采集的逻辑设计与GPS的授时信号及数据汇总模块的逻辑设计,最后介绍了双RAM乒乓操作的逻辑设计。第五章介绍了linux嵌入式系统的相关背景以及针对本论文所设计系统编译Uboot、内核kernel与linux文件系统,随后介绍了根据FPGA与ARM进行通讯所必要的数据采集接口设计,以及采集到的原始数据文件的转换与转换之后的数据基于GPS授时信号的合并处理,最后介绍系统测试所用的模拟信号源的程序设计。第六章主要对本文设计的实际电路进行设备性能的测试,对采集到数据进行分析是否可以满足要求,同时测试多节点时所采集到的数据在PPS信号的对齐校准下是否数据同步,最后对本文所做的工作做总结以及对未来工作的展望。
[Abstract]:With the continuous development of geophysical exploration technology, the devices of detection equipment are being upgraded to higher precision ADCs, more powerful CPU, and more advanced sensors, in order to acquire higher fidelity and richer. Clearer seismic data. However, because of the large volume of the current acquisition equipment, the length of transmission cable is limited by the distance, and the data can not be processed and saved in real time, so it is difficult to synchronize the clock. In this paper, a distributed detection scheme is proposed to synchronize the clocks of each node by using the precise timing signal of GPS to form a detection network. The GPS-ARM FPGA ADC is integrated into a single board to form an independent probe node, which reduces the size of the device for carrying. Node devices use internal power to supply power away from cable length constraints, and use powerful CPU to process data in real time and store it in internal memory. This paper is divided into six parts: the first chapter briefly introduces the current situation and development trend of geophysical acquisition equipment, and then studies the application of GPS precise timing in geophysical detection and related technology. The second chapter mainly introduces the overall design structure of geophysical node equipment, including the design of hardware circuit data transmission flow. The overall Design of data acquisition and data packet Logic in PCB part of hardware Circuit the whole program of data analysis and synchronous clock alignment for arm part is designed. The third chapter introduces the design of the hardware circuit of geophysical node equipment in detail, including the power supply design and device selection of power supply, the detailed circuit design of data acquisition and processing and the introduction of related devices. The detailed design of the data storage and analysis circuit and the related devices are introduced. Then, the ADC acquisition chip used in this paper is introduced. Finally, the related design of analog signal source is introduced in Chapter 4. Firstly, the hardware description language of FPGA is introduced, and the simulation tools and development environment of FPGA are also described. Then the logic design of ADC controller and the logic design of GPS timing signal and data summary module are introduced. Finally, the logic design of double RAM ping-pong operation is introduced. Chapter five introduces the background of linux embedded system and the design of data acquisition interface which is necessary for the communication between FPGA and ARM by compiling UbootUp, kernel kernel and linux file system for the system designed in this paper. The conversion of the original data file and the data after the conversion are based on the combined processing of the GPS timing signal. Finally, the program design of the analog signal source used in the system test is introduced. The sixth chapter mainly tests the equipment performance of the actual circuit designed in this paper, analyzes whether the collected data can meet the requirements, and tests whether the data collected when the multi-node is calibrated under the alignment of PPS signal, whether the data is synchronized or not. Finally, the work done in this paper is summarized and the future work is prospected.
【学位授予单位】:中国科学技术大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:P631.4;TN791

【参考文献】

相关期刊论文 前8条

1 彭朝勇;;面向预警的一体化强震仪实时嵌入式Linux系统研制[J];国际地震动态;2014年01期

2 刘振武;撒利明;董世泰;韩晓泉;;地震数据采集核心装备现状及发展方向[J];石油地球物理勘探;2013年04期

3 马灵;杨俊峰;宋克柱;王砚方;;地震数据采集中基于FPGA的多DDR SDRAM控制器设计[J];中国科学技术大学学报;2010年09期

4 张玮;詹仕凡;张少华;李培明;王克斌;冯许魁;何展翔;;石油地球物理勘探技术进展与发展方向[J];中国工程科学;2010年05期

5 郭建;刘光鼎;;无缆存储式数字地震仪的现状及展望[J];地球物理学进展;2009年05期

6 朱晓鹏;肖铁军;赵蕙;;ARM+FPGA的实时数据采集系统设计[J];计算机工程与设计;2009年13期

7 田家林;陈利学;寇向辉;;基于ARM与FPGA的嵌入式数控系统设计[J];机床与液压;2007年02期

8 陈联青;贾艳芳;顾欣莉;;GPS授时(网络)地震仪[J];物探装备;2006年S1期



本文编号:1855206

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/diqiudizhi/1855206.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户0dda5***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com