被动大陆边缘洋陆过渡带构造数值模拟及成因机制:开平凹陷例析
本文选题:开平凹陷 + 构造—地层层序 ; 参考:《中国地质大学(北京)》2017年硕士论文
【摘要】:开平凹陷位于珠江口盆地珠Ⅱ拗陷的西部,处于南海北部陆缘洋陆过渡带的位置。构造特征极为复杂,研究程度较低。本文基于最新的钻井和地震资料,结合前人研究的成果,分析了开平凹陷及邻区地质结构和构造演化;运用盆地模拟手段,计算了开平凹陷及邻区不同构造单元构造沉降量,并在此基础上,计算了壳幔伸展因子,以此来探讨开平凹陷及邻区的伸展模式和伸展机制。本次研究主要取得以下成果和认识:1.利用高精度三维地震剖面及钻井资料,通过不整合面分析表明开平凹陷发育多个不整合面,其中主洼和北洼发育六个大的不整合面;西洼和西南洼发育五个大的不整合面,由此将开平凹陷划分为七套(或六套)构造层:基底构造层、断陷一幕构造层、断陷二幕构造层、断陷三幕构造层、断拗期构造层、拗陷期构造层及加速沉降期构造层。不同构造单元不整合面特征存在差异,构造-地层层序特征也存在差异。2.以断层相关褶皱理论为指导,结合断层解释及△T0图的编制,认为开平凹陷受控于大型伸展拆离断层,是典型的拆离盆地。根据拆离断层几何学和运动学特征,将断层分为西南段、中段和东北段。西南段断层主要为犁式、座椅式和勺状形态,中段断层主要为座椅式和勺状,东北段断层为犁式。断层在下文昌组中段沉积期开始活动,在恩平组沉积末期近乎停止活动,三段断层并在这一时期发生硬连接作用。西洼和西南洼主要表现为北断南超的半地堑结构,而主洼和北洼受控于南部和北部断层的控制,表现为双向旋转的特征,具有地堑结构。3.结合人工井点,通过盆地模拟手段,恢复了盆地的沉降史,结果表明开平凹陷及邻区49-39Ma构造沉降速率最大,在39-30Ma开始显著减小,在30-17.5Ma有小幅度的增大,在17.5Ma也有增大现象。结合区域地质背景,认为17.5Ma构造沉降速率小幅度增大与海底扩张停止有关。30Ma左右南海扩张形成的破裂不整合面分割了裂陷期和裂后期地层,之后盆地进入区域性热沉降阶段。4.在构造沉降史的基础上,利用非均匀伸展模型,计算了不同人工井的壳幔伸展因子,由此绘制了剖面的伸展因子分布曲线。结果表明岩石圈地幔伸展因子明显大于地壳伸展因子,岩石圈地幔伸展因子在1.28-1.45之间变化,地壳伸展因子在1.08-1.3之间变化。地壳伸展因子的分布曲线与新生界沉积基底面大体呈镜像关系。综合前人研究及本次研究的结果认为,开平凹陷及邻区上地壳属于简单剪切伸展模式,具有不对称结构;下地壳及岩石圈地幔属于纯剪切伸展模式。岩石圈整体表现出非均匀差异伸展变形的特征。
[Abstract]:Kaiping sag is located in the western part of Zhujiangkou basin and located in the transitional zone of oceanic land in the northern margin of the South China Sea. The structural characteristics are very complex and the research degree is low. Based on the latest drilling and seismic data, combined with the results of previous studies, the geological structure and tectonic evolution of Kaiping sag and its adjacent areas are analyzed, and the tectonic subsidence of different structural units in Kaiping sag and adjacent area is calculated by using basin simulation. On this basis, the extensional model and the extensional mechanism of Kaiping depression and its adjacent areas are discussed by calculating the extensional factors of crust and mantle. This study mainly achieved the following results and understanding: 1. Using high precision 3D seismic profile and drilling data, the unconformity surface analysis shows that there are many unconformities in Kaiping sag, in which six large unconformities are developed in main and northern depression, and five unconformities are developed in Xiwa and southwest depression. Therefore, Kaiping sag can be divided into seven sets (or six sets) of structural layers: basement layer, fault depression one scene structure layer, fault depression second act tectonic layer, fault depression three act tectonic layer, fault-sag period structural layer, depression period structural layer and accelerated subsidence period structural layer. The unconformity surface features of different tectonic units are different, and the characteristics of tectonic-stratigraphic sequence are also different. Under the guidance of fault-related fold theory combined with fault interpretation and compilation of T0 diagram it is considered that Kaiping depression is controlled by large extensional detachment fault and is a typical detachment basin. According to the geometric and kinematic characteristics of the detachment fault, the fault is divided into the southwest segment, the middle section and the northeast section. The faults in the southwest part are plow type, seat type and ladle type, in the middle segment they are seat type and spoon type, and in the northeast part they are plough type. The fault started to be active in the middle part of the lower Wenchang formation, and nearly stopped at the end of the deposit period of the Enping formation, and the three sections of the fault formed a hard connection in this period. Xiwa and southwest depression are mainly semi-graben structure with north fault and south superstructure, while main depression and north depression are controlled by the control of southern and northern faults, showing the characteristics of bidirectional rotation, with graben structure .3. The subsidence history of the basin is restored by means of basin simulation combined with artificial well points. The results show that the subsidence rate of 49-39Ma structure in Kaiping sag and adjacent area is the largest, which decreases significantly in 39-30Ma, increases slightly in 30-17.5Ma and increases in 17.5Ma. Combined with the regional geological background, it is considered that the small increase of 17.5Ma tectonic subsidence rate is related to the depression of the South China Sea about .30Ma, and the fracture unconformities formed in the South China Sea, dividing the rift period and the late faulted strata, and then the basin enters into the regional thermal subsidence stage .4. Based on the history of tectonic subsidence, the crust-mantle extensional factors of different artificial wells are calculated by using the inhomogeneous extension model, and the distribution curves of the extensional factors in the profile are plotted. The results show that the lithospheric mantle extensional factor is obviously larger than the crustal extensional factor. The lithospheric mantle extensional factor varies from 1.28-1.45, and the crustal extensional factor varies from 1.08-1.3. The distribution curve of crustal extensional factors is mirrored with the sedimentary basement of the Cenozoic. It is concluded that the upper crust of Kaiping depression and its adjacent area belong to a simple shear extension model with asymmetric structure and that the lower crust and lithospheric mantle belong to a pure shear extension model. The lithosphere as a whole shows the characteristics of heterogeneous differential extensional deformation.
【学位授予单位】:中国地质大学(北京)
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:P736.1
【相似文献】
相关期刊论文 前10条
1 O.Eldholm;刘杰;;被动大陆边缘的主要类型(引论)[J];海洋地质译丛;1982年04期
2 马文璞;;被动大陆边缘地质[J];中国区域地质;1986年03期
3 孙海涛;钟大康;张思梦;;非洲东西部被动大陆边缘盆地油气分布差异[J];石油勘探与开发;2010年05期
4 任建业;大陆伸展、剥离断层和被动大陆边缘的演化[J];地质科技情报;1992年02期
5 温志新;童晓光;张光亚;王兆明;梁英波;;巴西被动大陆边缘盆地群大油气田形成条件[J];西南石油大学学报(自然科学版);2012年05期
6 Damian B O'Grady,周立君;硅质碎屑被动大陆边缘的地貌变化分类[J];海洋地质动态;2000年07期
7 万志峰;施秋华;蔡嵩;;被动大陆边缘张裂特征与南海北部陆缘构造属性[J];海洋地质前沿;2011年09期
8 G.S.Lister;韩宝福;;拆离断层作用与被动大陆边缘的演化[J];地震地质译丛;1987年02期
9 郭建宇;郝洪文;李晓萍;;南美洲被动大陆边缘盆地的油气地质特征[J];现代地质;2009年05期
10 高长林,秦德余,吉让寿,殷勇;扬子板块北部古被动大陆边缘的地球化学特征[J];岩石矿物学杂志;1991年04期
相关会议论文 前10条
1 赵淑娟;吴时国;;被动大陆边缘的分类、特征及其动力学演化[A];中国地球物理2010——中国地球物理学会第二十六届年会、中国地震学会第十三次学术大会论文集[C];2010年
2 付洁;黎明碧;唐勇;丁巍伟;;被动大陆边缘盆地沉降与深部地幔活动关系研究[A];中国地球物理2010——中国地球物理学会第二十六届年会、中国地震学会第十三次学术大会论文集[C];2010年
3 姚伯初;;被动大陆边缘的下地壳高速地壳层之探讨[A];1996年中国地球物理学会第十二届学术年会论文集[C];1996年
4 刘广润;陈国金;梁杏;朱干章;;江汉——洞庭湖平原区构造沉降与防洪对策研究[A];第三届湖北科技论坛优秀论文集[C];2005年
5 刘广润;陈国金;梁杏;朱干章;;江汉——洞庭湖平原区构造沉降与防洪对策研究[A];第三届湖北科技论坛水利分会场学术研讨会论文集[C];2005年
6 何仕斌;;珠江口盆地珠一坳陷下构造层层序地层分析与储层研究[A];2004第三届油气储层研讨会论文摘要集[C];2004年
7 谭开俊;卫平生;姚清洲;牟中海;孙东;刘震华;;准噶尔盆地西北缘不整合类型与油气成藏关系[A];中国石油勘探开发研究院西北分院建院20周年论文专集[C];2005年
8 郭进京;;五台山区甘泉砾岩归属及甘泉不整合[A];中国地质科学院天津地质矿产研究所文集(26-27)[C];1992年
9 周枫;;黔东南凯里虎庄残留油藏的地质研究[A];中国地球物理学会第二十三届年会论文集[C];2007年
10 张明华;侯俊胜;田舍;刘宽厚;;BP神经网络技术改进与三维多界面反演[A];1999年中国地球物理学会年刊——中国地球物理学会第十五届年会论文集[C];1999年
相关重要报纸文章 前2条
1 特约记者 赵应繁;长江防洪有了可靠地学依据[N];中国矿业报;2006年
2 贺彦 李启桂;大型不整合面科研攻关斩获丰厚[N];中国石化报;2013年
相关硕士学位论文 前7条
1 聂国权;被动大陆边缘洋陆过渡带构造数值模拟及成因机制:开平凹陷例析[D];中国地质大学(北京);2017年
2 龚承林;北波拿巴盆地及典型被动大陆边缘深水盆地构造演化及层序地层学研究[D];厦门大学;2009年
3 熊亮;断陷盆地构造沉降—挤压反转过程模拟分析技术及其应用[D];中国地质大学(北京);2008年
4 邱春光;松辽盆地滨北地区不整合面剥蚀量恢复研究[D];吉林大学;2004年
5 杜广义;白音查干凹陷桑合次洼断裂和不整合与油气成藏规律研究[D];中国石油大学;2008年
6 杨亮;新疆塔里木盆地孔雀河地区主要不整合面剥蚀量恢复及应用[D];吉林大学;2005年
7 刘伟;塔里木盆地孔雀河斜坡区域不整合特征及与油气成藏的关系[D];中国地质大学(北京);2012年
,本文编号:1947910
本文链接:https://www.wllwen.com/kejilunwen/diqiudizhi/1947910.html