当前位置:主页 > 科技论文 > 地质论文 >

频谱重构技术及其在储层预测中的应用

发布时间:2018-06-16 02:22

  本文选题:最小二乘反演 + 共轭梯度 ; 参考:《中国石油大学(华东)》2015年硕士论文


【摘要】:油气田勘探开发的程度越来越高,并且勘探领域不断扩展,所以难度逐渐增强,为了能够为油田的滚动勘探开发提供丰富有效的资料,我们提取出地震资料中更多的隐藏信息,地震属性分析能够满足这个要求。基于最小二乘反演的频谱重构技术假设地震资料频谱由雷克子波分量频谱线性组成,本文通过最小二乘反演迭代拟合,结合共轭梯度法求解非线性方程组,重构出雷克子波分量的主频值与振幅值从而能够求得不同主频雷克子波分量。针对不同地质构造对不同的频率特性敏感性不同,将频谱重构结果进行两项应用。一是对三维数据沿层提取数据,每道进行频谱重构,将求得主频值与振幅值作为两种新的属性,频谱重构主频属性和频谱重构振幅属性,应用到地震属性分析。利用这两种属性沿层进行了聚类分析,并且得到了良好的聚类效果,并同其他的属性效果进行了对比。二是对二维剖面求取平均频谱,并求取平均频谱的雷克子波分量,将得到的不同主频的雷克子波分量作为滤波器进行带通滤波,滤波后深层构造更加清晰。为了探索新提取的两种属性之间的联系,利用了主成分分析方法进行地震属性的优化。
[Abstract]:The degree of exploration and development of oil and gas fields is getting higher and higher, and the exploration field is expanding, so the difficulty is gradually increased. In order to provide rich and effective data for rolling exploration and development of oil fields, we extract more hidden information from seismic data. Seismic attribute analysis can meet this requirement. The spectrum reconstruction technique based on least square inversion assumes that the spectrum of seismic data is composed of linear components of Rayleigh wavelet components. In this paper, the nonlinear equations are solved by iterative fitting by least square inversion and conjugate gradient method. The main frequency value and amplitude value of the main frequency component can be obtained by reconstructing the main frequency wavelet component. Because different geological structures have different sensitivity to different frequency characteristics, the spectrum reconstruction results are applied in two applications. The first is to extract the data along the layer of 3D data and reconstruct the spectrum of each channel. The main frequency value and amplitude value are taken as two new attributes, the main frequency attribute of spectrum reconstruction and the amplitude attribute of spectrum reconstruction are applied to seismic attribute analysis. The two attributes are used to cluster analysis along the layer, and good clustering results are obtained, and compared with other attributes. The second is to obtain the average frequency spectrum of the two-dimensional section, and to obtain the components of the average spectrum. The different main frequency components of the Recker wavelet are used as the filter for bandpass filtering, and the deep structure of the filter becomes clearer. In order to explore the relationship between the two newly extracted attributes, principal component analysis (PCA) is used to optimize seismic attributes.
【学位授予单位】:中国石油大学(华东)
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:P631.4;P618.13

【参考文献】

相关期刊论文 前10条

1 江羡珍;马国栋;简金宝;;Wolfe线搜索下一个新的全局收敛共轭梯度法[J];工程数学学报;2011年06期

2 郑希锋;田志远;宋立温;;Wolfe线搜索下一类混合共轭梯度法的全局收敛性(英文)[J];运筹学学报;2009年02期

3 周光明;;Armijo型线搜索下一种共轭梯度法的收敛性[J];工程数学学报;2008年03期

4 熊冉;刘玲利;刘爱华;陈玉琨;党青宁;;地震属性分析在轮南地区储层预测中的应用[J];特种油气藏;2008年02期

5 吴雨花;桂志先;于亮;张宗和;桂冠;;地震属性分析技术在西南庄-柏各庄地区储层预测中的应用[J];石油天然气学报;2007年03期

6 王家映;;地球物理资料非线性反演方法讲座(一) 地球物理反演问题概述[J];工程地球物理学报;2007年01期

7 王咸彬,顾石庆;地震属性的应用与认识[J];石油物探;2004年S1期

8 黄国宏,邵惠鹤;核主元分析及其在人脸识别中的应用[J];计算机工程;2004年13期

9 王光宏,蒋平;数据挖掘综述[J];同济大学学报(自然科学版);2004年02期

10 朱甫芹;基于KPCA的城镇化水平综合评价[J];统计与决策;2004年01期

相关博士学位论文 前1条

1 杨小兵;聚类分析中若干关键技术的研究[D];浙江大学;2005年



本文编号:2024790

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/diqiudizhi/2024790.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户302b9***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com