彰武盆地早白垩世沉积体系与构造控制
本文选题:彰武盆地 + 早白垩世 ; 参考:《吉林大学》2016年博士论文
【摘要】:松南早白垩世断陷盆地群是潜力较大的勘探新区,彰武盆地作为其中的典型代表,滚动开发已经展开。钻井与试油结果表明,彰武盆地满盆含油,但只有X2和X8两个井区达到工业油流标准,并稳定投产,而在盆地其他部位,仅见油气显示,但并未发现成规模的油气藏。彰武盆地油气产区位于盆地X2-X8一线NNW走向的斜向低隆之上。研究盆内低隆如何产生,盆内沉积体系如何展布,以及盆地如何演化成为研究彰武盆地亟待解决的重要问题之一。解决这些问题,不仅可为盆地内进一步勘探开发提供参考,对其周缘断陷盆地的勘探开发同样具有借鉴价值。本文以整个彰武盆地为研究区,以下白垩统九佛堂组、沙海组为目的层,开展沉积体系与构造控制研究。根据地震剖面的地质解释确定盆地断裂和地层发育状况,研究盆地构造样式,并运用平衡剖面原理,绘制盆地构造发育史剖面,恢复盆地充填过程和构造演化,同时对盆地发育机制进行探讨。基于测井曲线、录井岩性、岩心等资料通过标准层控制下的旋回对比和分级控制的方法进行全盆砂组划分对比,建立层序地层格架,总结层序发育模式。确定沉积体系的平面展布,建立沉积相模式。从地层发育、沉积体系、成藏作用三个方面研究构造-火山作用对于盆地的控制作用。一、盆地构造特征和演化彰武盆地整体为东断西超的箕状盆地,东部为陡坡,西部为缓坡。断裂F1为控盆断裂,为犁式正断层,顶部较陡向下变缓。断裂F2、F3在伸展同时,伴随扭动作用,属调节断层。九佛堂组和沙海组时期,盆地经历了伸展阶段和扭转阶段两个阶段。伸展阶段包括拉张伸展期(相当于九佛堂组下段沉积期)、转换伸展期(相当于九佛堂组上段沉积期)、构造反转期(九佛堂组沉积期末)。扭转阶段包括转换伸展期(相当于沙海组下段沉积期)、萎缩反转期(相当于沙海组上段沉积期)。盆内最重要的低凸起即X2-X8凸起是由于盆地右旋扭动产生的挤压应力场造成的,这一凸起带是整个盆地的油气有利区。二、层序地层格架确定地层发育完整的井作为标准井。依据测井标准曲线和综合录井,对标准井含油层系进行砂组划分。在标准井砂组划分后,优选标准层段,建立典型剖面,开展标准井统层。建立过标准井的骨干剖面网,从标准井出发,采取邻井对比,井点辐射,逐步蔓延,统一闭合,划分全区的地层。识别层序界面,建立了层序地层格架,九佛堂组和沙海组共划分了13个三级层序,4个二级层序。4个二级层序(超层序)相当于九佛堂组下段、九佛堂组上段、沙海组下段和沙海组上段。13个三级层序分别相当于九7-九1砂组的7个层序,沙5、沙4-沙3、沙2的3个层序,沙1-1、沙1-2、沙1-3的3个层序。据此建立盆地层序模式共5种8型。包括受正拉张伸展构造控制的“粗-细-粗对称”和受斜张走滑控制的“细-粗-细偏对称”的陡坡型;受正拉张伸展构造控制的“粗-细非对称”和受斜张走滑控制的“细-粗-细对称”的缓坡型;受正或斜拉张构造控制的“细夹粗”的深水型;受正拉张伸展构造控制的“细-粗-细”的深槽型;受斜张走滑构造控制的“细-粗-细”的台滩型。三、物源-沉积体系识别出彰武盆地的岩石类型,四类、十五亚类、二十次亚类和47类基本类型。4大类包括陆源碎屑岩大类、火山熔岩大类、火山碎屑岩大类和侵入岩(脉岩)大类。十五亚类包括砾岩、砂岩、灰岩等,二十次亚类包括安山玄武岩、玄武岩等,47类基本类型包括复成分砾岩、砂砾岩等。识别出彰武盆地的沉积相(相、亚相和微相)类型,四相、十亚相、二十微相。四相分别是湖泊相、扇三角洲相、三角洲相和火山岩相,十亚相包括浅湖、半深湖、水下扇等,二十微相包括浊流、静水泥、水下河道等。沉积体系包括东部沉积体系、西部沉积体系、西南沉积体系、东北沉积体系等。其中,主要沉积体系为东部沉积体系和西部沉积体系。东部为火山物源-扇三角洲物源-沉积体系,西部为火山-风化物源-辫状河三角洲沉积体系。四、构造控制伸展扭动构造机制下的构造沉降导致相对湖平面变化,并由此控制层序发育,特别表现在水进期盆地中部有大规模沉积物进积。随构造活动伴生的火山作用既提供了大量的沉积物,并使得盆地东部物源和西部物源产生差异。同期发育的同生凸起和两侧深凹陷提供了深湖的油页岩和沼泽的煤层两种烃源岩。构造作用产生的X2—X8低凸起与两侧生油凹陷一起,构成了近源组合,利于油气藏的形成,使得X2—X8一带成为成藏有利区。
[Abstract]:The early Cretaceous fault basin group in southern Songliao basin is a new exploration area with great potential. As a typical representative of the Zhangwu basin, the rolling development has been carried out. The results of drilling and oil test show that the Zhangwu basin is filled with oil, but only the two wells in the X2 and X8 wells reach the standard of industrial oil flow, and the oil and gas show only in other parts of the basin, but in other parts of the basin, only oil and gas display, but the other parts of the basin are shown only by oil and gas display, but the other parts of the basin are shown only by oil and gas display. The oil and gas reservoirs in Zhangwu basin are not found. The oil and gas producing areas in the Zhangwu basin are located above the oblique low uplift of the NNW direction of the front line of the basin. It is one of the important problems to study how the low uplift of the basin is produced, how the sedimentary system is distributed in the basin and how the basin evolves to be one of the important problems to be solved in the Zhangwu basin. One step of exploration and development provides reference and is of reference value for the exploration and development of its circumference faulted basin. This paper takes the whole Zhangwu basin as the study area, the following nine Buddha Hall formation in the Cretaceous and the Sha Hai formation as the purpose layer, to carry out the study of the sedimentary system and structure control. The structural style of the basin is studied, and the balance section principle is used to draw the tectonic development history section of the basin, to restore the filling process and structural evolution of the basin, and to discuss the mechanism of the basin development. Based on the logging curve, logging lithology, core and other data, the whole basin sand group is carried out through the method of cycle contrast and classification control under the control of standard layer. It establishes the sequence stratigraphic framework, summarizes the sequence development pattern, determines the plane distribution of the depositional system and establishes the sedimentary facies model, and studies the control effect of the tectonic volcanism on the basin from three aspects of formation development, depositional system and reservoir formation. One, the basin tectonic characteristics and evolution of Zhangwu Basin are the skip like basins of the East fault West. In the East, the East is a steep slope and the west is a gentle slope. The fault F1 is a control Basin fault, it is a plow type fault, and the top is steeply downward. The fracture is F2, F3 is extended at the same time, and is associated with the adjustment fault. The basin experienced two stages of stretching and twisting stages during the period of nine and Sha Hai formation. The extension stage includes the extension period (equivalent to nine). The transformation extension period (equivalent to the upper part of the nine fo Tang formation) and the tectonic inversion period (the end of the nine Buddhist temple sedimentary period). The reverse phase includes the transition extension period (equivalent to the lower section of the Sha Hai formation) and the atrophy reversal period (equivalent to the upper part of the Sha Hai Group). The most important low uplift in the basin is the X2-X8 uplift. The extrusion stress field produced by dextral twisting is caused by the stress field of the whole basin. Two, the sequence stratigraphic framework determines the well developed well as the standard well. According to the standard logging curve and comprehensive logging, the sand group in the standard well is divided. After the standard well sand group is divided, the standard level section is selected and established. Typical profile, standard well formation, established standard well backbone section network, starting from standard wells, adopting adjacent well contrast, well point radiation, gradual spread, unified closure, division of whole area formation, identification of sequence interface, sequence stratigraphic framework, nine fo Tang formation and Sha Hai formation, 13 three order sequences and 4 grade two sequence.4 two levels The sequence (super sequence) is equivalent to the lower part of the nine fo Tang formation, the upper part of the nine fo Tang formation, the lower section of the Sha Hai formation and the upper part of the Sha Hai formation.13 three sequence is equivalent to 7 sequence of nine 7- nine 1 sand groups, sand 5, sand 4- sand 3, 3 sequence of sand 2, Sha 1-1, Sha 1-2 and Sha 1-3. The "coarse fine coarse symmetry" controlled by the "coarse fine skew symmetrical" slope controlled by oblique stretching; "coarse finely asymmetric" controlled by a positive stretching extension and a "fine coarse fine symmetrical" gentle slope controlled by oblique stretching; a "fine coarse" deepwater type controlled by a positive or oblique tension structure; subjected to a positive tension extensional structure. The "fine coarse fine" deep groove type, controlled by the slanting and sliding structure, is controlled by the slant and sliding structure. Three, the source sedimentary system identifies the rock types of the Zhangwu basin, the four, the fifteen subcategories, the twenty subclasses and the 47 basic types, including the terrestrial clastic rock, the volcanic lava large category, the major category and invade of the pyroclastic rock. The fifteen subclasses include conglomerate, sandstone, limestone and so on. The twenty subclasses include Anshan Xuan Wuyan, Xuan Wuyan and so on. The 47 types of basic types include complex conglomerate and gravel. The sedimentary facies (facies, subfacies and microfacies) of the Zhangwu basin, four facies, ten subfacies and twenty microfacies are identified as lacustrine facies and fan delta facies, respectively. The delta facies and volcanic facies, the ten subfacies include shallow lakes, semi deep lakes, subaqueous fans, and the twenty microfacies include turbidity, static cement and underwater channel. The sedimentary system includes the eastern sedimentary system, the Western sedimentary system, the southwest sedimentary system and the Northeast sedimentary system, among which the main sedimentary system is the eastern sedimentary system and the Western sedimentary system. The East is the East. The volcanic source fan delta source sedimentary system, the western part of the volcano weathered source - braided river delta sedimentary system. Four, the tectonic subsidence caused by tectonic control extension and torsion structure resulted in relative lake level change, and thus controlled the sequence development, especially in the middle of the basin. The associated volcanism not only provides a large number of sediments, but also causes differences in the eastern and Western sources of the basin. The simultaneous uplift and deep sag developed in the same period provide two source rocks of the deep lake oil shale and the swamp coal beds. The X2 - X8 low uplift produced by the tectonic action is associated with the two sides of the oil sags, forming a near source assemblage. It is favorable for the formation of oil and gas reservoirs, making the X2 X8 area a favorable area for hydrocarbon accumulation.
【学位授予单位】:吉林大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:P618.13
【相似文献】
相关期刊论文 前10条
1 王平;邹德江;李胜利;;深县凹陷沙一下段沉积体系恢复方法[J];油气藏评价与开发;2012年01期
2 王红霞;李睿;;甘肃北山地区沙婆泉期沉积体系特征[J];甘肃科技;2013年13期
3 Werner Ricken;汪筱林;;记录小规模气候旋回的沉积体系的敏感性[J];世界地质;1993年01期
4 刘振夏,夏东兴,王揆洋;中国陆架潮流沉积体系和模式[J];海洋与湖沼;1998年02期
5 赵俊兴,田景春,蔡进功;惠民凹陷南坡古中生代沉积体系特征及时空演化[J];沉积与特提斯地质;2002年01期
6 李华;何幼斌;王振奇;;深水高弯度水道—堤岸沉积体系形态及特征[J];古地理学报;2011年02期
7 张成弓;陈洪德;陈安清;林良彪;隆轲;杨帅;;黔南-桂中地区二叠系沉积体系展布规律及演化[J];成都理工大学学报(自然科学版);2012年06期
8 杨福珍,,王宇林,高明泽;平庄西露天矿区元宝山组沉积体系分析[J];阜新矿业学院学报(自然科学版);1995年01期
9 张银国;梁杰;;南黄海盆地二叠系至三叠系沉积体系特征及其沉积演化[J];吉林大学学报(地球科学版);2014年05期
10 王敏芳,黄传炎;盐湖沉积体系的研究现状与油气地质意义[J];内江科技;2005年03期
相关会议论文 前10条
1 杨会东;宋立忠;董丽红;于连忠;褚春梅;张萍;;坳陷盆地沉积体系精细研究方法探讨[A];增强自主创新能力 促进吉林经济发展——启明杯·吉林省第四届科学技术学术年会论文集(上册)[C];2006年
2 孟睿;;浅谈纳岭沟地区沉积体系与铀成矿之间的关系[A];中国核科学技术进展报告(第二卷)——中国核学会2011年学术年会论文集第1册(铀矿地质分卷)[C];2011年
3 孟睿;;浅谈纳岭沟地区沉积体系与铀成矿之间的关系[A];全国铀矿大基地建设学术研讨会论文集(上)[C];2012年
4 吴因业;涂小仙;;吐鲁番盆地三叠系沉积体系与油气储集体研究[A];2001年全国沉积学大会摘要论文集[C];2001年
5 赖生华;陆先亮;束青林;;断陷盆地沉积体系研究新思路:从古地貌、岩性变化、水体深度到沉积体系[A];第九届全国古地理学及沉积学学术会议论文集[C];2006年
6 高抒;;全新世海岸沉积体系形成、演化及资源潜力:以江苏海岸为例[A];中国地理学会2007年学术年会论文摘要集[C];2007年
7 李安春;秦蕴珊;;中国近海细粒沉积体系及其环境响应[A];第三届全国沉积学大会论文摘要汇编[C];2004年
8 刘家铎;张哨楠;田景春;赵锡奎;何建军;;塔里木盆地志留-泥盆系沉积体系及储层评价[A];第八届古地理学与沉积学学术会议论文摘要集[C];2004年
9 敬小军;高攀峰;李儒春;杨立国;姬瑞兰;王勇;;绥靖油田主力生油层系沉积微相及储层特征研究[A];青年人才与石化产业创新发展——第七届宁夏青年科学家论坛论文集[C];2011年
10 ;鄂尔多斯盆地西北部长8油层石油勘探[A];2008年度中国地质科技新进展和地质找矿新成果资料汇编[C];2008年
相关博士学位论文 前10条
1 王腾飞;彰武盆地早白垩世沉积体系与构造控制[D];吉林大学;2016年
2 秦志亮;南海北部陆坡块体搬运沉积体系的沉积过程、分布及成因研究[D];中国科学院研究生院(海洋研究所);2012年
3 魏红红;鄂尔多斯地区石炭—二叠系沉积体系及层序地层学研究[D];西北大学;2002年
4 窦伟坦;鄂尔多斯盆地三叠系延长组沉积体系、储层特征及油藏成藏条件研究[D];成都理工大学;2005年
5 刘文;Rub’Al Khali盆地古生界沉积体系及石油地质特征[D];成都理工大学;2007年
6 付锁堂;鄂尔多斯盆地北部上古生界沉积体系及砂体展布规律研究[D];成都理工大学;2004年
7 朱志军;川东南地区志留系小河坝组沉积体系及物质分布规律研究[D];成都理工大学;2010年
8 李伟;柴达木盆地沉积体系发育的动力学机制及成藏效应[D];成都理工大学;2004年
9 王海侨;英台地区萨葡高油层沉积体系及储层特征研究[D];中国石油大学;2008年
10 刘晓;二连盆地乌里亚斯太凹陷中洼沉积体系及油气成藏条件分析[D];中国地质大学(北京);2006年
相关硕士学位论文 前10条
1 潘冬;白云凹陷北坡珠江组沉积体系分析[D];长江大学;2015年
2 付彦辉;琼东南盆地南部深水水道沉积体系及其油气意义[D];中国石油大学;2009年
3 刘智;中卫及周缘地区晚古生代主要海泛期沉积体系[D];中国海洋大学;2013年
4 赵玉峰;川西地区中晚三叠世多重地层划分对比及沉积体系分析[D];成都理工大学;2009年
5 李新富;正村勘探区石炭—二叠系沉积体系及聚煤规律研究[D];河北工程大学;2011年
6 韦东晓;鄂尔多斯盆地中西部地区三叠系延长组长6沉积体系及砂体展布规律研究[D];成都理工大学;2007年
7 岳翠;松辽盆地南部伏龙泉断陷北部下白垩统沉积体系及储层特征研究[D];吉林大学;2008年
8 裴家学;路东凹陷九上段沉积体系及储层研究[D];东北石油大学;2013年
9 吴永良;塔里木盆地震旦系沉积体系及岩相古地理特征研究[D];成都理工大学;2010年
10 姜岩;华北油田霸县凹陷古近纪沙河街组三段沉积体系特征[D];中国地质大学(北京);2014年
本文编号:2060765
本文链接:https://www.wllwen.com/kejilunwen/diqiudizhi/2060765.html