压缩感知方法及在探地雷达信号采集中的模拟研究
[Abstract]:Because of the difference in dielectric properties of different subterranean media, GPR can react underground by excitation and reception of electromagnetic waves. In order to follow the Nyquist sampling law and the large amount of data collected from it, it makes a lot of difficulties in the R & D of radar instruments. Compression perception is made. It is a new signal acquisition and imaging technique, which can recover the original signal by collecting far less than Nyquist's data in the condition that the signal is sparse or sparse in the transform domain. This is of practical significance to reduce the storage pressure of the instrument and equipment. The sparsity of the ground penetrating radar signal is discussed. The characteristics of the underdetermined linear system and the sparsity of the undetermined linear system are improved by the p norm. The compressed sensing is actually compressing the data at the same time when the signal is collected, it is a path of reducing the dimension of the sampling, not the compression of the source code. It is mainly composed of signal sparse representation, signal acquisition and recovery three parts. This paper makes a comparative study on the reconstruction algorithm of compressed sensing (orthogonal matching tracking and base tracking) in the recovery signal, the correct probability of the support set, and the computational complexity. A simulation model containing the underground target body is established in this paper. At the same time, the subsurface space is discretized and the radar signal is associated with the underground target body by creating a dictionary. The low dimensional Gauss random matrix is used to collect the signal. The simulation experiment shows that the data acquisition can be greatly reduced and the reconstruction imaging of the underground target body can be realized by compression perception.
【学位授予单位】:中国地质大学(北京)
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:P631.3
【参考文献】
相关期刊论文 前10条
1 马宁;王建新;董宁斐;;基于正交匹配追踪的欠采样LFM信号参数估计[J];电子与信息学报;2013年08期
2 闵锐;杨倩倩;皮亦鸣;曹宗杰;;基于正则化正交匹配追踪的SAR层析成像[J];电子测量与仪器学报;2012年12期
3 王军华;黄知涛;周一宇;王丰华;;基于近似l_0范数的稳健稀疏重构算法[J];电子学报;2012年06期
4 戴琼海;付长军;季向阳;;压缩感知研究[J];计算机学报;2011年03期
5 孙林慧;杨震;叶蕾;;基于自适应多尺度压缩感知的语音压缩与重构[J];电子学报;2011年01期
6 杨海蓉;张成;丁大为;韦穗;;压缩传感理论与重构算法[J];电子学报;2011年01期
7 屈乐乐;方广有;杨天虹;;压缩感知理论在频率步进探地雷达偏移成像中的应用[J];电子与信息学报;2011年01期
8 刘亚新;赵瑞珍;胡绍海;姜春晖;;用于压缩感知信号重建的正则化自适应匹配追踪算法[J];电子与信息学报;2010年11期
9 杨荣根;任明武;杨静宇;;基于稀疏表示的人脸识别方法[J];计算机科学;2010年09期
10 李华;鲁光银;何现启;邓珂;;探地雷达的发展历程及其前景探讨[J];地球物理学进展;2010年04期
相关博士学位论文 前2条
1 邓承志;图像稀疏表示理论及其应用研究[D];华中科技大学;2008年
2 孔令讲;浅地层探地雷达信号处理算法的研究[D];电子科技大学;2003年
相关硕士学位论文 前1条
1 王文超;压缩感知理论在探地雷达成像中的应用研究[D];华东交通大学;2012年
,本文编号:2147326
本文链接:https://www.wllwen.com/kejilunwen/diqiudizhi/2147326.html