基于Fast-AIC算法的微地震事件初至拾取及自动识别技术研究
[Abstract]:Microseismic monitoring technology is one of the most reliable methods for evaluating fracturing effect in oil field at present. Through accurate location of microseismic events, fracture strike, dimension and inversion mechanism can be judged, which provides a basis for subsequent production and development of oil field. Automatic identification of microseismic events and first break pick-up is one of the most important techniques. The picking speed and precision of seismic wave at first arrival directly affect the efficiency of micro-seismic positioning and the reliability of positioning results. Micro-seismic monitoring methods are mainly used in Tianjin. The micro-seismic source locates several hundred meters or even several kilometers below the earth's surface, and the signal-to-noise ratio of micro-seismic records is generally low, which leads to the limitations of the existing methods of automatic identification of micro-seismic events and first break picking in processing actual micro-seismic data. In order to accurately pick up the first arrival time of microseismic signals corresponding to all microseismic events, the number and time of microseismic events induced by hydraulic fracturing are uncertain. Firstly, the number of microseismic events and the approximate induced time are determined, and then the local microseismic data are picked up precisely according to the induced time of microseismic events. Akaike Information Criteria (AIC) method is simple to implement and easy to calculate. It is especially suitable for local data acquisition with microseismic events. However, the calculation efficiency of large-scale microseismic data processing for long-term records needs to be improved. In order to overcome the shortcomings in the above studies, a new method based on Fast-AIC algorithm is proposed to pick up the first break of microseismic signals. In order to overcome the dependence of micro-seismic identification method based on perforation signal on pre-perforation data, a layered velocity model based on acoustic logging curve is proposed and ray tracing theory is used to forward modeling when there is no actual perforation data. The perforation signal is calculated instead of the actual perforation signal. Then, according to the geophone arrangement parameters and formation velocity parameters of hydraulic fracturing monitoring system, the local effective data is selected near the trigger time of micro-seismic events, and the local data is filtered by Curvelet transform to provide high signal-to-noise ratio for accurately picking up micro-seismic signals. Finally, in order to improve the efficiency of picking up the first break of microseismic signals, the traditional AIC algorithm is deduced mathematically, and the original formula is transformed to get the arithmetic sum of discrete real number sequence and the linear combination form of square sum. The fast AIC algorithm (Fast-AIC algorithm) is obtained by reducing the repeated calculation. Compared with the traditional AIC method, the computational efficiency is more than 1000 times higher after 6500 sampling points. Based on the technical scheme studied in this paper, the method of picking up the first arrival of microseismic events and automatic identification based on Fast-AIC algorithm is programmed and realized. The reliability and accuracy of this method are tested and analyzed. At the same time, this method and several conventional methods are used to automatically pick up the first break of the actual hydraulic fracturing microseismic data in Shanxi, China. Compared with the results of manual picking, the absolute error of the picking result is smaller.
【学位授予单位】:吉林大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TE357.1;P631.4
【相似文献】
相关期刊论文 前10条
1 赵向东;陈波;姜福兴;;微地震工程应用研究[J];岩石力学与工程学报;2002年S2期
2 刘建中,王春耘,刘继民,赵玉武,刘志鹏;用微地震法监测油田生产动态[J];石油勘探与开发;2004年02期
3 刘建安,马红星,慕立俊,邱筱琳;井下微地震裂缝测试技术在长庆油田的应用[J];油气井测试;2005年02期
4 王亚娟;张华光;王成旺;刘利霞;邓军;胡淑娟;;利用微地震测绘和压裂模拟分析进行水力裂缝增长动态研究[J];国外油田工程;2006年10期
5 周仲礼;王琪;殷静;范谭广;谈伟敦;;用微地震发现高速岩性及识别油气[J];吐哈油气;2008年03期
6 黄今;苏华友;卢国胜;杜林;范波峰;;采动过程中微地震定位方法研究[J];现代矿业;2009年02期
7 黄克献;李利立;刘军芳;岳琳;杨启明;;微地震地下影像技术在注水破裂监测和剩余油分布研究中的应用[J];内蒙古石油化工;2009年14期
8 胡庆春;孟米;;基于大井距油气田的微地震压裂监测技术研究[J];天然气技术与经济;2011年04期
9 张万鹏;永野宏治;罗绍河;;基于倒频谱解析法的近接型相似微地震对研究[J];中国测试;2012年04期
10 缪华祥;姜福兴;宋雪娟;杨淑华;魏全德;;矿山微地震活动特征的概率分析方法研究[J];采矿与安全工程学报;2012年05期
相关会议论文 前4条
1 储仿东;王永辉;李永平;衡峰;容娇君;;微地震井中监测技术在致密砂岩中的应用实例[A];中国地球物理2013——第十二专题论文集[C];2013年
2 余洋洋;梁春涛;杨宜海;;微地震监测系统的设计[A];中国地球物理2013——第二十三专题论文集[C];2013年
3 张佩;张海江;M.Nafi Toksoz;;犹他州Cove Fort-Sulphurdale地区微地震震源机制研究与应用[A];2014年中国地球科学联合学术年会——专题12:强震机理、孕育环境与地震活动性分析论文集[C];2014年
4 骆循;;矿山与大型地下工程灾害监测的微地震技术应用[A];中国地球物理学会第二十三届年会论文集[C];2007年
相关重要报纸文章 前3条
1 特约记者 李铭 通讯员 彭树禹;长庆井下首次实施微地震试验成功[N];中国石油报;2009年
2 特约记者 林勇;胜利油田首次自主微地震压裂监测采集试验成功[N];东营日报;2010年
3 记者 金江山 通讯员 王晓泉;井中微地震裂缝监测技术获重大突破[N];中国石油报;2013年
相关博士学位论文 前5条
1 江海宇;油田压裂微地震地面监测速度模型校正及定位研究[D];吉林大学;2016年
2 况文欢;结合地震学和地质力学对微地震数据的研究[D];中国科学技术大学;2015年
3 张唤兰;微地震数值模拟及震源定位方法研究[D];西安科技大学;2014年
4 逄焕东;岩体微地震的模式、定位及其失稳预报研究[D];山东科技大学;2004年
5 尹陈;微地震震源破裂特征研究及应用[D];成都理工大学;2017年
相关硕士学位论文 前10条
1 王超;微地震正演方法研究[D];长安大学;2015年
2 李亮;微地震信号自动检测及震源扫描分割矩阵反演方法研究[D];长安大学;2015年
3 于子超;水力压裂微地震信号提取与裂缝反演研究[D];长安大学;2015年
4 蒋腾飞;微地震数据去噪方法研究[D];长江大学;2015年
5 毛小波;基于PTP的多节点微地震数据懫集与传输技术研究[D];成都理工大学;2015年
6 屈敬翔;面向页岩气勘探的微地震采集记录仪研制[D];中国海洋大学;2015年
7 田厚强;郓城煤矿综放采场微地震与应力特征研究及应用[D];安徽理工大学;2016年
8 王东鹤;基于射线理论的微地震速度模型校正方法研究[D];吉林大学;2016年
9 刘昕;基于高阶累积量和Shearlet变换的微地震数据噪声压制研究[D];吉林大学;2016年
10 常凯;稀疏约束反演在微地震插值与成像中的应用[D];吉林大学;2016年
,本文编号:2184798
本文链接:https://www.wllwen.com/kejilunwen/diqiudizhi/2184798.html