基于概率统计反演的储层定量表征方法
[Abstract]:In this paper, the reservoir characterization based on probability statistics and the quantitative evaluation method of uncertainty and reservoir modeling are studied. The research involves inversion of reservoir physical parameters, reservoir lithofacies identification, quantitative evaluation and analysis of uncertainty, and reservoir geostatistical modeling. In view of the problems encountered in reservoir characterization and modeling, some new strategies are proposed in this paper, and the validity of the verification method based on the model data and the actual data is presented. Reservoir physical property information is an important basis for reservoir evaluation, which is usually obtained by inversion of reservoir elastic information through rock physical relations. Because of the complexity of mathematical relation in rock physical model, the inversion objective function usually has strong nonlinearity, which affects the inversion accuracy of reservoir physical parameters. In addition, when the inversion accuracy of elastic parameters is low, it is usually difficult to predict reservoir water saturation information. For this reason, combining Monte Carlo simulation and intelligent optimization algorithm, a large number of random sampling in reservoir physical parameter space is carried out to carry out rock physics forward modeling and elastic parameter contrast analysis to realize sample optimal selection. Gao Si model is used to calculate the posterior probability information of reservoir physical parameters. In view of the difficulty of prediction of water saturation due to the low inversion accuracy of reservoir elastic parameters, the statistical relationship between water saturation and porosity, muddy content of reservoir is analyzed statistically. Based on the inversion results of porosity and muddy content, the information of reservoir water saturation is obtained by using the above statistical relation. The effectiveness of the method is verified by the application of practical area data. Methods based on the inversion of reservoir physical parameters, reservoir lithofacies identification was carried out. In order to solve the problem of uncertainty in predicting reservoir lithofacies distribution information by seismic data, a multi-step inversion method based on probability and statistics is used in this paper. The relationship between the input and output parameters is established in the links of rock physical modeling and log lithofacies definition. The reservoir lithofacies probability is obtained by combining the probabilistic information of each link to characterize the uncertainty of seismic lithofacies identification. In order to reduce the scale of probability matrix, attribute mapping feature constrained inversion parameter space is used to improve the efficiency of the algorithm and reduce the uncertainty of inversion. The entropy function is introduced to quantitatively evaluate and analyze the uncertainty of seismic lithofacies identification. By obtaining the probability and entropy information of lithofacies under the constraint of each link condition information, the transmission law and composition characteristics of uncertainty are quantitatively analyzed. In this paper, the probability of reservoir lithofacies obtained by seismic lithofacies identification is regarded as the constraint information of reservoir lithofacies modeling. Reservoir lithofacies modeling is carried out by using Tau model fusion logging and seismic lithofacies probability information combined with sequential indicator simulation method in geostatistics. By introducing seismic lithofacies probability information into the modeling, the accuracy and stability of reservoir lithofacies modeling results are improved to a certain extent, and the uncertainty of modeling is reduced, which provides important reference information for reservoir fine characterization.
【学位授予单位】:中国石油大学(北京)
【学位级别】:博士
【学位授予年份】:2016
【分类号】:P618.13
【相似文献】
相关期刊论文 前10条
1 韦博成,王金德;江苏省概率统计分会学术活动报导[J];应用概率统计;2000年03期
2 徐波;概率统计的教学思考[J];黔西南民族师专学报;2000年03期
3 丁永臻,刘兆君;数学建模观与师专概率统计课程教学改革[J];石油教育;2000年Z1期
4 宋礼民;财经类《概率统计》教学探析[J];湖北成人教育学院学报;2000年04期
5 吴群英;《概率统计》课程中采用兴趣与启发式教学[J];广西高教研究;2001年03期
6 林正炎;概率统计课程改革的若干建议[J];高等数学研究;2001年01期
7 徐传胜;概率统计教学改革的实践与探索[J];临沂师范学院学报;2002年03期
8 陈慧力;从概率统计的特点看义务教育阶段加强概率统计教学的必要性[J];济南教育学院学报;2003年03期
9 时红霞;《概率统计》教学中的兴趣培养[J];和田师范专科学校学报;2005年02期
10 陈绚青;对管理系概率统计课程教学的探索[J];科技资讯;2005年24期
相关会议论文 前10条
1 朱德刚;;概率统计课程教学探讨[A];江苏省现场统计研究会第11次学术年会论文集[C];2008年
2 张荣基;张树美;;提高《概率统计》课程教学质量的因素分析[A];2003中国现场统计研究会第十一届学术年会论文集(上)[C];2003年
3 孔繁亮;张国志;赵辉;赵建中;王铭军;;对新世纪概率统计系列课程教学内容与体系改革的探索与思考——黑龙江省教育十五规划课题研究报告[A];高教改革研究与实践(上册)——黑龙江省高等教育学会2003年学术年会论文集[C];2003年
4 李英英;;概率统计在经济管理科学中的部分应用[A];中国现场统计研究会第九届学术年会论文集[C];1999年
5 程龙生;;Г函数及一类广义积分公式在概率统计中的应用[A];江苏省现场统计研究会第八次学术年会论文集[C];2003年
6 邱志平;王晓军;马一;;处理不确定问题的新方法——非概率区间分析模型[A];力学史与方法论论文集[C];2003年
7 罗承忠;于福生;;随机区间的落影分布[A];中国系统工程学会模糊数学与模糊系统委员会第五届年会论文选集[C];1990年
8 顾红英;黄国骞;;应用测井资料定量识别单井岩相及沉积微相的方法研究[A];中国地球物理.2003——中国地球物理学会第十九届年会论文集[C];2003年
9 张允白;;扬子陆块中奥陶世早期鹦鹉螺多样性与岩相的关系[A];加入WTO和中国科技与可持续发展——挑战与机遇、责任和对策(下册)[C];2002年
10 刘振峰;郝天珧;戴明刚;;Markov链模型在储层岩相模拟中的应用[A];中国地球物理.2003——中国地球物理学会第十九届年会论文集[C];2003年
相关重要报纸文章 前2条
1 北京大学数学科学学院;统计学一代宗师———许宝,
本文编号:2305553
本文链接:https://www.wllwen.com/kejilunwen/diqiudizhi/2305553.html