当前位置:主页 > 科技论文 > 地质论文 >

地震作用下多年冻土区低缓坡度滑坡发育机理研究

发布时间:2018-11-06 18:11
【摘要】:青藏高原是我国多年冻土分布的主要区域,同时也是我国地震最集中发生的地区。随着我国西部大开发战略的实施和深入,大型工程项目建设越来越多的在青藏高原兴起,此类工程的建设和维护也将越来越受到人们关注。因此研究多年冻土区斜坡在地震作用下的失稳机理是十分必要的,其研究成果将会对此地工程建设具有一定的影响意义。运用振动台等设备进行了多年冻土区斜坡的近似原型试验和数值模拟。通过对前人研究成果和试验段现场考察,设计并制作了多年冻土区低缓坡度斜坡近似原型的模型,采用反映青藏高原地震特点的人工合成地震波,完成了水平方向和垂直方向荷载下的大型振动台模型试验。研究指出地震作用下多年冻土区斜坡滑动是沿着冰土界面的软弱层整体滑动的,斜坡土体内部没有发生变形。斜坡破坏后其水平方向自振频率下降明显,垂直方向无明显变化。加速度沿斜坡高程具有放大效应,水平方向加速度放大效应大于垂直方向,在冰土界面软弱层加速度放大效应小于下部冰层和上部土体。冰土界面软弱层的孔隙水压力受水平方向地震荷载影响较大且在振动过程中变化明显。振动过程中上部土体的温度有所增加,冰土界面的水分含量逐渐增大。数值计算地震作用下此类斜坡的动力响应指出,随着地震荷载的增大,斜坡稳定的安全系数不断减小;振动过程中冰土界面孔隙水压力不断上升,当振幅较小时孔压上升不明显,振幅较大时孔压上升明显;斜坡的最大剪应变主要存在冰土界面软弱层中。综合考虑多年冻土区地震作用下斜坡破坏机理可认为冰土界面软弱层的存在是导致地震作用下斜坡沿冰土界面滑动的主要因素,振动过程中冰土界面超孔隙水压力的产生和冰土界面软弱层加速度减小而产生的剪力以及冰土界面软弱层含水量增大,都是诱发滑坡的因素。本次研究得到了中科院寒旱所冻土工程国家重点实验室开放基金(No.SKLFSE201209)的支持。
[Abstract]:Qinghai-Xizang Plateau is the main area of permafrost distribution in China, and it is also the most concentrated area of earthquakes in China. With the implementation and deepening of the strategy of western development in China, more and more large-scale engineering projects are springing up in the Qinghai-Tibet Plateau, and the construction and maintenance of such projects will be paid more and more attention to. Therefore, it is necessary to study the instability mechanism of slopes in permafrost regions under earthquake, and the research results will have a certain impact on the local engineering construction. The approximate prototype test and numerical simulation of slope in permafrost region were carried out by means of shaking table and other equipment. Based on the previous research results and field investigation of the test section, an approximate prototype model of low-gradient slope in permafrost region is designed and made. The synthetic seismic waves reflecting the seismic characteristics of the Qinghai-Xizang Plateau are adopted. The model tests of large shaking table under horizontal and vertical loads have been completed. It is pointed out that the slope sliding in permafrost region under earthquake is a whole sliding along the interface of ice and soil and there is no deformation inside the slope soil. After the slope failure, the natural vibration frequency of horizontal direction decreases obviously, but the vertical direction has no obvious change. The acceleration amplification effect along the slope height is larger than that in the vertical direction, and the acceleration amplification effect in the weak layer at the interface between ice and soil is smaller than that in the lower ice layer and the upper soil mass. The pore water pressure of the weak layer at the interface of ice and soil is greatly affected by the horizontal seismic load and changes obviously during the vibration process. During vibration, the temperature of the upper soil increases and the moisture content of the interface increases gradually. Numerical calculation of the dynamic response of this kind of slope under seismic action indicates that the safety factor of slope stability decreases with the increase of seismic load. During vibration, pore water pressure at the interface of ice soil is rising continuously, but pore water pressure increases obviously when the amplitude is small, and the maximum shear strain of slope mainly exists in the weak layer at the interface of ice and soil. Considering the mechanism of slope failure under earthquake action in permafrost region, it can be concluded that the existence of weak layer at the interface of ice and soil is the main factor leading to the slope sliding along the interface of ice and soil under earthquake. The formation of excess pore water pressure at the ice-soil interface, the shear force caused by the decrease of acceleration in the ice-soil interface weak layer and the increase of the water content in the ice-soil interface are all the factors that induce the landslide. The study was supported by the State key Laboratory of Frozen soil Engineering (No.SKLFSE201209) of the Institute of Cold and drought of the Chinese Academy of Sciences.
【学位授予单位】:上海交通大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TU435;P642.22

【参考文献】

相关期刊论文 前10条

1 周幼吾,郭东信;我国多年冻土的主要特征[J];冰川冻土;1982年01期

2 赵淑萍,何平,朱元林,常小晓;冻结砂土在动荷载下的蠕变特征[J];冰川冻土;2002年03期

3 杨平,张婷;人工冻融土物理力学性能研究[J];冰川冻土;2002年05期

4 冯勇;何建新;刘亮;杨力行;;冻融循环作用下细粒土抗剪强度特性试验研究[J];冰川冻土;2008年06期

5 王彩霞,马春林,高柏新;冰冻地区路堑边坡溜方原因分析与稳定性验算方法[J];东北公路;2001年01期

6 薄景山,徐国栋,景立平;土边坡地震反应及其动力稳定性分析[J];地震工程与工程振动;2001年02期

7 程国栋;青藏高原多年冻土区路基工程地质研究[J];第四纪研究;2003年02期

8 靳德武,牛富俊,陈志新,倪万魁;不同渗流条件下无限斜坡稳定性分析方法探讨[J];地质灾害与环境保护;2003年04期

9 靳德武;牛富俊;李宁;刘再斌;;青藏高原多年冻土区热融滑塌模型试验研究[J];工程勘察;2006年09期

10 冯志仁;刘红帅;于龙;;地震作用下含软弱夹层顺层岩质边坡表面放大效应研究[J];防灾减灾工程学报;2014年01期



本文编号:2315078

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/diqiudizhi/2315078.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户3fab4***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com