基于颗粒流的高含石量巨粒土填料剪切特性研究
[Abstract]:The foundation of the infrastructure construction project in the southwest part of the Southwest has formed a large number of filling projects. The filler used mainly consists of crushed stone and soil mixed by blasting in the excavation area, and often has high stone content (up to 60%), and the large-grain group of soil particles (with a mass percentage of more than 15%). The size of the stone is large (up to 1m), which is referred to as the high-stone-containing large-particle soil filler. The shear characteristic is one of the most important bases for evaluating the properties of the filler, and the related shear strength and shear deformation characteristics are highly valued by the engineering and technical personnel. In order to study the shear characteristics of the high-stone-containing giant soil filler, this paper, based on the four-period expansion project of the Chongqing Jiangbei International Airport, based on the Monte-Carlo method, uses the FISH language built-in of the PFC to carry out secondary development. The particle flow packing model based on the particle size component and the random polygonal block is constructed, and the effect of the size effect, the particle size of the giant particle and the stone content on the shear characteristics of the filler is studied. The research results are of great reference value to the construction of the hilly land in the mountainous area. The main contents and results of this paper are as follows: The particle size composition and apparent characteristic of the high-stone-containing giant-particle soil filler are obtained through the on-site investigation, in-room screening and digital image processing, and the analysis of the stone shape provides a statistical basis for the construction of the random polygonal block model. An indoor direct shear test is carried out on the collected samples, and the experimental results provide the key data of the micro-parameter and macro-parameter calibration for subsequent particle flow numerical simulation. Based on the Monte-Carlo method, a random sampling model for describing the shape of the stone is constructed, and the particle flow packing model based on the particle size component and the random polygonal block is constructed by the secondary development of the FISH language built in the PFC2D. and the accurate simulation of the particle size component and the irregular polygonal block of the filler is realized. The numerical model of the particle flow of the direct shear test is constructed, and the whole process of the direct shear test in the packing chamber is simulated, and the numerical simulation results of the particle flow basically reflect the shearing characteristics of the filler. By continuously monitoring and recording the position of the fracture in the model, the development of the shear plane with the shear displacement in the course of the direct shear test is obtained, and the morphological characteristics of the shear plane are also analyzed. In order to enlarge the research scale, the particle size of the soil-rock boundary is re-divided, and the minimum particle size of the model is changed accordingly, and the size effect of the high-stone-containing giant-particle soil filler is studied. The results show that, under the condition that the sample stage and the loading condition are all the same, the size of the model is increased, the peak value of the shear stress is reduced, the shear strain corresponding to the peak value of the shear stress is reduced, the shear expansion is gradually reduced, and the viscosity and the internal friction angle are also reduced. this change tends to be gentle as the size of the model is relatively large. The numerical model of soil particle distribution in different macro-particle groups was designed by using the mass substitution method and other mass substitution method to keep the content of the coarse and fine material unchanged. The results of the numerical simulation show that, with the larger diameter of the stone in the model, the particle size is small, the number of stones is replaced, and the cohesive force is gradually reduced, but the internal friction angle is increasing. In order to guide the practice of the project, the particle size of the stone shall be controlled in accordance with the relevant specifications in the filling construction, and the stone shall be decomposed for the stone with the particle size exceeding the specification. In order to maintain the loading condition and the relative proportion of each block group, the numerical model with the stone content of 10%, 30%, 40%, 50%, 60%, 70%, 80% and 90%, respectively, was designed. The results of the numerical simulation show that the higher the stone content, the higher the shear stress peak, the higher the shear stress-shear strain curve near the elastic section, the smaller the shear strain corresponding to the shear stress peak, and the shear expansion. the viscosity and the internal friction angle can be divided into three parts along with the change curve of the different rock-containing quantity: 1) when the stone-containing amount is 10-40%, the internal friction angle is gradually increased with the increase of the stone-containing amount, and the viscous-accumulation force is gradually reduced; and 2) when the stone-containing amount is 40-70%, the stone-containing amount is increased, When the cohesive force is increased to a certain extent, the internal friction angle is small; 3) When the stone content is 70-90%, the adhesion force is significantly reduced with the increase of the stone content, and the internal friction angle is obviously increased. According to the above conclusion, when the stone content is more than 70%, with the increase of the stone content, the adhesion and accumulation force of the filler is greatly reduced, and the compaction quality is difficult to be guaranteed, so that the filler with the stone content of more than 70% shall be avoided in the filling project.
【学位授予单位】:重庆大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TU751.4;TU432
【相似文献】
相关期刊论文 前10条
1 方玉树;对颗粒流理论的一点认识[J];水文地质工程地质;1990年01期
2 张端明,雷雅洁,张美军,李智华;混合颗粒流分形模型及相关有效热传导的分析[J];华中科技大学学报;2001年12期
3 黄德财;孙刚;厚美瑛;陆坤权;;颗粒速度在颗粒流稀疏流-密集流转变中的作用[J];物理学报;2006年09期
4 叶坚;毛旭锋;夏建新;;颗粒流研究最新进展与挑战[J];中央民族大学学报(自然科学版);2009年04期
5 白若虚;程雪松;郑刚;;关于土渗透系数颗粒流细观参数研究[J];低温建筑技术;2012年01期
6 孟凡净;刘q;王伟;;剪切平行板间密集颗粒流的接触力分布及各向异性分析[J];应用数学和力学;2013年07期
7 罗勇;龚晓南;吴瑞潜;;桩墙结构的颗粒流数值模拟研究[J];科技通报;2007年06期
8 朱涵成;韩文喜;陈超;;砂岩常规三轴的颗粒流数值模拟[J];地质灾害与环境保护;2013年03期
9 周英,鲍德松,张训生,雷哲民,胡国琦,唐孝威;边界条件对二维斜面颗粒流颗粒分布的影响[J];物理学报;2004年10期
10 周健,池永;土的工程力学性质的颗粒流模拟[J];固体力学学报;2004年04期
相关会议论文 前10条
1 杨馥菱;张慰慈;陈俊杉;谢尚贤;;碰撞模型参数对滑道道高浓度干颗粒流发展之影响(英文)[A];第七届海峡两岸工程力学研讨会论文摘要集[C];2011年
2 秦琦;王等明;;斜面颗粒流对围墙冲击作用的离散单元法模拟[A];中国力学大会——2013论文摘要集[C];2013年
3 孟云伟;柴贺军;;颗粒流离散元在滑坡运动过程模拟中的应用[A];第一届中国水利水电岩土力学与工程学术讨论会论文集(上册)[C];2006年
4 杨果成;刘启一;胡茂彬;姜锐;吴清松;;双瓶颈斜槽上的颗粒流相变和双稳态[A];中国力学大会——2013论文摘要集[C];2013年
5 胡国琦;厚美瑛;杜其永;;密集态颗粒流的激波结构[A];中国力学学会学术大会'2009论文摘要集[C];2009年
6 张家铭;任永强;;基于三维颗粒流理论的混合土体力学参数反演研究[A];颗粒材料计算力学研究进展[C];2012年
7 郭海庆;李志刚;;粒径在颗粒流标定过程中对边坡岩土体细观参数的影响研究[A];中国计算力学大会'2010(CCCM2010)暨第八届南方计算力学学术会议(SCCM8)论文集[C];2010年
8 孙其诚;王光谦;;斜面颗粒流的离散元模拟[A];中国科学技术协会2008防灾减灾论坛论文集[C];2008年
9 马宗源;徐清清;党发宁;;碎石土地基动力夯实的颗粒流离散元数值分析[A];第21届全国结构工程学术会议论文集第Ⅰ册[C];2012年
10 郭海庆;李志刚;高庄平;;粒径在颗粒流标定过程中对边坡岩土体细观参数的影响[A];岩石力学与工程的创新和实践:第十一次全国岩石力学与工程学术大会论文集[C];2010年
相关博士学位论文 前5条
1 罗勇;土工问题的颗粒流数值模拟及应用研究[D];浙江大学;2007年
2 王伟;针对典型摩擦副的非流态化颗粒流润滑特性研究[D];合肥工业大学;2009年
3 曹文广;稠密气固两相射流的实验研究与数值模拟[D];华东理工大学;2013年
4 曾远;土体破坏细观机理及颗粒流数值模拟[D];同济大学;2006年
5 邱成春;H-V 加筋路堤动力特性的试验及颗粒流分析[D];上海大学;2013年
相关硕士学位论文 前10条
1 樊航;自由下落颗粒流卷吸空气量及颗粒运动特性研究[D];西安建筑科技大学;2015年
2 于凡;间质流体对湿颗粒流化特性影响的研究[D];哈尔滨工业大学;2015年
3 汪汝峰;深部人工冻结黏土加卸载颗粒流模拟研究[D];中国矿业大学;2015年
4 王国呈;粘性颗粒在纤维体上沉积的数值模拟方法优化[D];安徽工业大学;2015年
5 王雷;基于颗粒流的高含石量巨粒土填料剪切特性研究[D];重庆大学;2015年
6 王家军;喷射颗粒流润滑试验研究及有限元仿真[D];合肥工业大学;2009年
7 陈德文;锚固机理的模型试验研究及其颗粒流数值模拟[D];山东大学;2008年
8 王智勇;平行板颗粒流摩擦系统的力链构型与演变研究[D];合肥工业大学;2013年
9 廖静薇;基于颗粒流强度折减法的粉质粘土边坡稳定性分析[D];重庆大学;2014年
10 陈宜楷;基于颗粒流离散元的尾矿库坝体稳定性分析[D];中南大学;2012年
,本文编号:2386350
本文链接:https://www.wllwen.com/kejilunwen/diqiudizhi/2386350.html