当前位置:主页 > 科技论文 > 地质论文 >

准噶尔盆地春风油田浅薄储集层地震逐级精细预测

发布时间:2019-01-30 13:42
【摘要】:针对准噶尔盆地春风油田浅薄储集层地震资料信噪比低和分辨率不足等问题,开展针对性的处理、解释技术研究,形成浅薄储集层地震逐级精细预测方法。采用互叠式偏移距分组处理技术,将地震资料的覆盖次数由8次增加至16次,同时经过提频去噪成像等精细处理,局部低信噪比区信噪比提高1.4倍;建立叠前提高分辨率目标处理、叠后子波重构拓频、叠前叠后联合反演的三级预测技术,最终砂体分辨能力由12 m逐步提高至2 m,有效提高了储集层识别精度。浅薄储集层在逐级提频后的资料中反射更为清晰、连续,与实际钻探结果吻合较好,资料具有较好的保幅性,取得了较好的实际应用效果。
[Abstract]:Aiming at the problems of low signal-to-noise ratio and low resolution of seismic data of shallow reservoir in Chunfeng Oilfield of Junggar Basin, this paper develops a method of fine seismic prediction of shallow reservoir. The coverage of seismic data is increased from 8 times to 16 times by using overlapping offset block processing technology. At the same time, the signal-to-noise ratio of local low signal-to-noise ratio is increased by 1.4 times after fine processing such as raising frequency and de-noising imaging. A three-level prediction technique based on high resolution target processing, post-stack wavelet reconstruction and post-stack joint inversion is established. Finally, the resolution of sand body is gradually improved from 12 m to 2 m, and the recognition accuracy of reservoir is improved effectively. The shallow reservoir reflects more clearly and continuously in the data after increasing the frequency step by step, which is in good agreement with the actual drilling results, and the data have good amplitude preservation and good practical application effect.
【作者单位】: 中国地质大学(北京)地球科学与资源学院;中国石化胜利油田公司物探研究院;
【基金】:国家科技重大专项(2011ZX05028;2016ZX05011)
【分类号】:P618.13;P631.4

【参考文献】

相关期刊论文 前10条

1 王学忠;杨元亮;席伟军;;油水过渡带薄浅层特稠油微生物开发技术——以准噶尔盆地西缘春风油田为例[J];石油勘探与开发;2016年04期

2 胡英;张东;袁建征;黄绍坚;姚弟;徐凌;张才;秦前清;;Laplace-Fourier域多尺度高效全波形反演方法[J];石油勘探与开发;2015年03期

3 于正军;;灰质背景下浊积岩储层地震响应特征及识别方法——以东营凹陷董集洼陷为例[J];油气地质与采收率;2014年02期

4 汲生珍;邬兴威;夏东领;;子波分解与重构技术在储层预测中的应用[J];石油天然气学报;2013年11期

5 宋t,

本文编号:2418183


资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/diqiudizhi/2418183.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户55894***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com